
MATLAB® Compiler SDK™
MATLAB® Production Server™ Testing Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ MATLAB® Production Server™ Testing Guide
© COPYRIGHT 2012–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 6.0 (Release R2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017b)
March 2018 Online only Revised for Version 6.5 (Release R2018a)
September 2018 Online only Revised for Version 6.6 (Release R2018b)
March 2019 Online only Revised for Version 6.6.1 (Release R2019a)
September 2019 Online only Revised for Version 6.7 (Release R2019b)
March 2020 Online only Revised for Version 6.8 (Release R2020a)
September 2020 Online only Revised for Version 6.9 (Release R2020b)
March 2021 Online only Revised for Version 6.10 (Release R2021a)
September 2021 Online only Revised for Version 6.11 (Release R2021b)
March 2022 Online only Revised for Version 7.0 (Release R2022a)
September 2022 Online only Revised for Version 7.1 (Release R2022b)
March 2023 Online only Revised for Version 7.2 (Release R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Deployable Archive Creation
1

Create Deployable Archive for MATLAB Production Server 1-2
Create MATLAB Function . 1-2
Create Deployable Archive with Production Server Compiler App 1-2
Customize Application and Its Appearance . 1-3
Package Application . 1-4
Create Deployable Archive Using compiler.build.productionServerArchive

. 1-5
Compatibility Considerations . 1-5

Create and Install a Deployable Archive with Excel Integration for
MATLAB Production Server . 1-7

Prerequisites . 1-7
Create Function in MATLAB . 1-7
Create Deployable Archive with Excel Integration Using Production Server

Compiler App . 1-7
Customize the Application and Its Appearance . 1-8
Package the Application . 1-9
Create Deployable Archive with Excel Integration Using

compiler.build.excelClientForProductionServer 1-10
Install the Deployable Archive with Excel Integration 1-11

Create Microservice Docker Image . 1-12
Prerequisites . 1-12
Create MATLAB Function . 1-12
Create Deployable Archive . 1-13
Package Deployable Archive into Docker Image 1-13
Test Docker Image . 1-14
Share Docker Image . 1-15

Microservice Command Arguments . 1-17

Deploy Object Detection Model as Microservice . 1-20
Required Products . 1-20
Prerequisites . 1-20
Create MATLAB Function to Detect Objects . 1-21
Create Deployable Archive . 1-22
Package Archive into Microservice Docker Image 1-22
Test Docker Image . 1-23
Share Docker Image . 1-24

iii

Contents

Write Deployable MATLAB Code
2

MATLAB Coding Guidelines . 2-2

State-Dependent Functions . 2-3
Does My MATLAB Function Carry State? . 2-3
Defensive Coding Practices . 2-3
Techniques for Preserving State . 2-4

Deploying MATLAB Functions Containing MEX Files 2-5

Supported MATLAB Data Types for Client and Server Marshaling 2-6
Supported Data Types . 2-6
Partially Supported Data Types . 2-6
Unsupported Data Types . 2-6

Modifying Deployed Functions . 2-7

Use Parallel Computing Resources in Deployable Archives 2-8
Use Profile Available in Cluster Profile Manager . 2-8
Link to Exported Profile . 2-8
Reuse Existing Parallel Pool in Deployable Archive 2-9
Limitations . 2-9

Persistence
3

Data Caching Basics . 3-2
Typical Workflow for Data Caching . 3-2
Configure Server to Use Redis . 3-2
Example: Increment Counter Using Data Cache . 3-3

Manage Application State in Deployed Archives . 3-5
Step 1: Write MATLAB Code that uses Persistence Functions 3-5
Step 2: Run Example in Testing Workflow . 3-9
Step 3: Run Example in Deployment Workflow . 3-10

Handle Custom Routes and Payloads in HTTP Requests 3-14
Write MATLAB Function for Web Request Handler 3-14
Configure Server for URL Routes . 3-15
End-to-End Setup for Web Request Handler . 3-16

MATLAB Production Server Integration Testing
4

Write a Test Client . 4-2

iv Contents

Test Client Data Integration Against MATLAB . 4-3
Create a MATLAB Function . 4-3
Prepare for Testing . 4-3
Test Using RESTful API . 4-6
Testing Using Java Client Application . 4-10

Test Web Request Handlers . 4-12
Set Environment Variable for Routes File . 4-12
Use MATLAB Preferences Folder for Routes File 4-12
End-to-End Setup to Test Web Request Handlers 4-12

MATLAB Not Responding to Web Requests Made to Test Server 4-17
Issue . 4-17
Possible Solutions . 4-17

MATLAB Production Server Excel Add-In
5

Data Marshaling Rules . 5-2
Default Marshaling Rules . 5-2
Change Rules for Marshaling Data into MATLAB 5-2
Change Rules for Marshaling Data into Excel . 5-2

MATLAB Production Server Excel Add-In
6

XLA File Not Generated . 6-2

Server Configuration Add-in Not Enabled . 6-3

Error Using a Variable Number of Outputs . 6-4

v

Functions
7

Apps
8

Client Programming
9

Create MATLAB Production Server Java Client Using MWHttpClient Class
. 9-2

Create a C# Client . 9-6

Create a Python Client . 9-9

Create a C++ Client . 9-10

RESTful API JSON Encode and Decode Functions
10

Persistence Functions
11

Examples
12

Deploy Object Detection Model as Microservice . 12-2

vi Contents

Deployable Archive Creation

1

Create Deployable Archive for MATLAB Production Server
Supported platform: Windows®, Linux®, Mac

Note To create a deployable archive, you need an installation of the MATLAB Compiler SDK product.

This example shows how to create a deployable archive using a MATLAB function. You can then
deploy the generated archive on MATLAB Production Server.

Create MATLAB Function
In MATLAB, examine the MATLAB program that you want to package.

For this example, write a function addmatrix.m as follows.

function a = addmatrix(a1, a2)

a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2 5
8; 3 6 9]).

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

Create Deployable Archive with Production Server Compiler App
Package the function into a deployable archive using the Production Server Compiler app.
Alternatively, if you want to create a deployable archive from the MATLAB command window using a
programmatic approach, see “Create Deployable Archive Using
compiler.build.productionServerArchive” on page 1-5.

1 To open the Production Server Compiler app, type productionServerCompiler at the
MATLAB prompt.

Alternatively, on the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In
Application Deployment, click Production Server Compiler. In the Production Server
Compiler project window, click Deployable Archive (.ctf).

2 In the Production Server Compiler project window, specify the main file of the MATLAB
application that you want to deploy.

1
In the Exported Functions section, click .

2 In the Add Files window, browse to the example folder, and select the function you want to
package.

Click Open.

Doing so adds the function addmatrix.m to the list of main files.

1 Deployable Archive Creation

1-2

Customize Application and Its Appearance
Customize your deployable archive and add more information about the application.

• Archive information — Editable information about the deployed archive.
• Additional files required for your archive to run — Additional files required to run the

generated archive. These files are included in the generated archive installer. See “Manage
Required Files in Compiler Project”.

• Files packaged for redistribution — Files that are installed with your archive. These files
include:

• Generated deployable archive
• Generated readme.txt

See “Specify Files to Install with Application”.
• Include MATLAB function signature file — Add or create a function signature file to help

clients use your MATLAB functions. See “MATLAB Function Signatures in JSON”.

 Create Deployable Archive for MATLAB Production Server

1-3

Package Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — Folder containing the archive archiveName.ctf
• for_testing — Folder containing the raw generated files to create the installer

1 Deployable Archive Creation

1-4

• PackagingLog.html — Log file generated by MATLAB Compiler SDK

Create Deployable Archive Using
compiler.build.productionServerArchive
As an alternative to the Production Server Compiler app, you can create a deployable archive
using a programmatic approach.

• Build the deployable archive using the compiler.build.productionServerArchive
function.

Optionally, you can add a function signature file to help clients use your MATLAB functions. For
more details, see “MATLAB Function Signatures in JSON”.
buildResults = compiler.build.productionServerArchive('addmatrix.m',...
'FunctionSignatures','addmatrixFunctionSignatures.json',...
'Verbose','on');

buildResults =

 Results with properties:

 BuildType: 'productionServerArchive'
 Files: {'/home/mluser/Work/magicarchiveproductionServerArchive/addmatrix.ctf'}
 IncludedSupportPackages: {}
 Options: [1×1 compiler.build.ProductionServerArchiveOptions]

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.productionServerArchive.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files within a folder named
addmatrixproductionServerArchive in your current working directory:

• addmatrix.ctf — Deployable archive file.
• includedSupportPackages.txt — Text file that lists all support files included in the

assembly.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were

not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• readme.txt — Text file that contains packaging and deployment information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.
• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Compatibility Considerations
In most cases, you can generate the deployable archive on one platform and deploy to a server
running on any other supported platform. Unless you add operating system-specific dependencies or
content, such as MEX files or Simulink® simulations to your applications, the generated archives are
platform-independent.

 Create Deployable Archive for MATLAB Production Server

1-5

See Also
compiler.build.productionServerArchive | deploytool | Production Server Compiler |
mcc

More About
• “Test Client Data Integration Against MATLAB” on page 4-3
• Production Server Compiler
• “Deploy Archive to MATLAB Production Server” (MATLAB Production Server)
• “MATLAB Function Signatures in JSON”
• “JSON Representation of MATLAB Data Types” (MATLAB Production Server)

1 Deployable Archive Creation

1-6

Create and Install a Deployable Archive with Excel Integration
for MATLAB Production Server

Supported Platform: Microsoft® Windows only.

This example shows how to create a deployable archive with Excel integration using a MATLAB
function. You can then deploy the generated archive on MATLAB Production Server.

Prerequisites
MATLAB Compiler SDK requires .NET framework 4.0 or later to build Excel add-ins for MATLAB
Production Server.

To generate the Excel add-in file (.xla), enable Trust access to the VBA project object model in
Excel. If you do not do this, you can manually create the add-in by importing the .bas file into Excel.

Create Function in MATLAB
In MATLAB, examine the MATLAB program that you want to package.

For this example, write a function mymagic.m as follows.

function y = mymagic(x)

y = magic(x);

At the MATLAB command prompt, enter mymagic(3).

The output is:

 ans =
 8 1 6
 3 5 7
 4 9 2

Create Deployable Archive with Excel Integration Using Production
Server Compiler App
Package the function into a deployable archive with Excel integration using the Production Server
Compiler app. Alternatively, if you want to create a deployable archive from the MATLAB command
window using a programmatic approach, see “Create Deployable Archive with Excel Integration
Using compiler.build.excelClientForProductionServer” on page 1-10.

1 To open the Production Server Compiler app, type productionServerCompiler at the
MATLAB prompt.

Alternatively, on the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In
Application Deployment, click Production Server Compiler. In the Production Server
Compiler project window, click Deployable Archive with Excel integration.

2 In the Production Server Compiler project window, specify the main file of the MATLAB
application that you want to deploy.

 Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server

1-7

1
In the Exported Functions section, click .

2 In the Add Files window, browse to the example folder, and select the function you want to
package.

Click Open.

Doing so adds the function mymagic.m to the list of main files.

Customize the Application and Its Appearance
Customize your deployable archive with Excel integration and add more information about the
application.

• Archive information — Editable information about the deployed archive with Excel integration.
• Client configuration — Configure the MATLAB Production Server client. Select the Default

Server URL, decide wait time-out, and maximum size of response for the client, and provide an
optional self-signed certificate for https.

• Additional files required for your archive to run — Additional files required by the generated
archive to run. These files are included in the generated archive installer. See “Manage Required
Files in Compiler Project”.

• Files installed with your archive — Files that are installed with your archive on the client and
server. The files installed on the server include:

• Generated deployable archive (CTF file)
• Generated readme.txt

The files installed on the client include:

• mymagic.bas
• mymagic.dll
• mymagic.xla
• readme.txt
• ServerConfig.dll

See “Specify Files to Install with Application”.
• Options — The option Register the resulting component for you only on the development

machine exclusively registers the packaged component for one user on the development
machine.

1 Deployable Archive Creation

1-8

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

 Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server

1-9

2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — Folder containing the installer to distribute the archive on the
MATLAB Production Server client and server

• for_redistribution_files_only — Folder containing the files required for
redistributing the application on the MATLAB Production Server client and server

• for_testing — Folder containing the raw generated files to create the installer
• PackagingLog.html — Log file generated by MATLAB Compiler SDK

Create Deployable Archive with Excel Integration Using
compiler.build.excelClientForProductionServer
As an alternative to the Production Server Compiler app, you can create a deployable archive with
Excel integration using a programmatic approach.

1 Create a production server archive using mymagic.m and save the build results to a
compiler.build.Results object.

buildResults = compiler.build.productionServerArchive('mymagic.m');
2 Build the deployable archive with Excel integration using the

compiler.build.excelClientForProductionServer function.
mpsxlResults = compiler.build.excelClientForProductionServer(buildResults, ...
'Verbose','on');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.excelClientForProductionServer.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files within a folder named
mymagicexcelClientForProductionServer in your current working directory:

• includedSupportPackages.txt — Text file that lists all support files included in the
assembly.

1 Deployable Archive Creation

1-10

• mymagic.bas — VBA module file that can be imported into a VBA project.
• mymagic.dll — Dynamic library required by the Excel add-in.
• mymagic.reg — Text file that contains information on unresolved symbols.
• mymagic.xla — Excel add-in that can be installed directly in Excel.
• mymagicClass.cs — Text file that contains information on unresolved symbols.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were

not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• readme.txt — Text file that contains packaging and deployment information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.

Note The generated Excel add-in does not include MATLAB Runtime or an installer. To create an
installer using the buildResults object, see compiler.package.installer.

Install the Deployable Archive with Excel Integration
You must deploy the archive to a MATLAB Production Server instance before you can use the add-in
in Excel.

To install the deployable archive on a server instance:

1 Locate the archive in the for_redistribution_files_only\server\ folder if you used the
Production Server Compiler, or the addmatrixproductionServerArchive folder if you used
the compiler.build.productionServerArchive function.

For this example, the file name is mymagic.ctf.
2 Copy the archive file to the auto_deploy folder of the server instance. The server instance

automatically deploys it and makes it available to interested clients.

For more information, see “MATLAB Production Server” documentation.

See Also
Production Server Compiler | mcc

 Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server

1-11

Create Microservice Docker Image
Supported platform: Linux, Windows, macOS

This example shows how to create a microservice Docker image. The microservice image created by
MATLAB Compiler SDK provides an HTTP/HTTPS endpoint to access MATLAB code.

You package a MATLAB function into a deployable archive, and then create a Docker image that
contains the archive and a minimal MATLAB Runtime package. You can then run the image in Docker
and make calls to the service using any programming language that has HTTP libraries, including
MATLAB Production Server client APIs.

This option is best for developers who want to incorporate a MATLAB algorithm or Simulink
simulation within a larger application as a service, or to provide a synchronous request-response
backend API service. To create a Docker image that contains a standalone application, see “Package
MATLAB Standalone Applications into Docker Images”.

Prerequisites
• Verify that you have MATLAB Compiler SDK installed on the development machine.
• Verify that you have Docker installed and configured on the development machine by typing

[~,msg] = system('docker version') in a MATLAB command window.

Note If you are using WSL, use [~,msg] = system('wsl docker version') instead.

If you do not have Docker installed, follow the instructions on the Docker website to install and set
up Docker.

docs.docker.com/engine/install/

To build microservice images on Windows, you must install either Docker Desktop or Docker on
Windows Subsystem for Linux v2 (WSL2).

• To install Docker Desktop, see docs.docker.com/desktop/windows/install/.
• To install Docker on WSL2, see https://www.mathworks.com/matlabcentral/answers/

1758410-how-do-i-install-docker-on-wsl2.
• If the computer you are using is not connected to the Internet, you must download the MATLAB

Runtime installer for Linux from a computer that is connected to the Internet and transfer the
installer to the offline computer. Then, run the command
compiler.runtime.createInstallerDockerImage(filepath), where filepath is the
path to the transferred MATLAB Runtime installer archive.

You can download the installer from the MathWorks website.

https://www.mathworks.com/products/compiler/matlab-runtime.html

Create MATLAB Function
In MATLAB, examine the MATLAB program that you want to package.

For this example, write a function named mymagic.m using the following code.

1 Deployable Archive Creation

1-12

https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/windows/install/
https://www.mathworks.com/matlabcentral/answers/1758410-how-do-i-install-docker-on-wsl2
https://www.mathworks.com/matlabcentral/answers/1758410-how-do-i-install-docker-on-wsl2
https://www.mathworks.com/products/compiler/matlab-runtime.html

function y = mymagic(x)
y = magic(x);

At the MATLAB command prompt, enter mymagic(5).

The output is a 5-by-5 magic square matrix.

ans =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Deployable Archive
Package the mymagic function into a deployable archive using the
compiler.build.productionServerArchive function.

Specify additional options in the compiler.build command by using name-value arguments. For
details, see compiler.build.productionServerArchive.

Optionally, you can add a function signature file to help clients use your MATLAB functions. For more
details, see “MATLAB Function Signatures in JSON”.
mpsResults = compiler.build.productionServerArchive('mymagic.m',...
'FunctionSignatures','mymagicFunctionSignatures.json',...
'ArchiveName','magicarchive','Verbose','on')

mpsResults =

 Results with properties:

 BuildType: 'productionServerArchive'
 Files: {'/home/mluser/Work/magicarchiveproductionServerArchive/magicarchive.ctf'}
 IncludedSupportPackages: {}
 Options: [1×1 compiler.build.ProductionServerArchiveOptions]

The compiler.build.Results object mpsResults contains information on the build type,
generated files, included support packages, and build options.

Once the build is complete, the function creates a folder named
magicarchiveproductionServerArchive in your current directory that contains the deployable
archive.

Package Deployable Archive into Docker Image
Build the microservice Docker image using the mpsResults object that you created.

Specify additional options in the compiler.build command by using name-value arguments. For
details, see compiler.package.microserviceDockerImage.
compiler.package.microserviceDockerImage(mpsResults,'ImageName','micro-magic')

The function generates the following files within a folder named micro-
magicmicroserviceDockerImage:

 Create Microservice Docker Image

1-13

• applicationFilesForMATLABCompiler/magicarchive.ctf — Deployable archive file.
• Dockerfile — Docker file that specifies run-time options.
• GettingStarted.txt — Text file that contains deployment information.

Test Docker Image

Note If Docker is running in a WSL2 session, preface the following commands with wsl.

1 In a Linux terminal, verify that your micro-magic image is in your list of Docker images.

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
micro-magic latest 4401fa2bc057 23 seconds ago 1.42GB
matlabruntime/r2023a/update0/4200000000000000 latest 5259656e4a32 24 hours ago 1.42GB

2 Run the micro-magic microservice image in Docker.

docker run --rm -p 9900:9910 micro-magic

Port 9910 is the default port exposed by the microservice within the Docker container. You can
map it to any available port on your host machine. For this example, it is mapped to port 9900.

You can specify additional options in the Docker command. For a complete list of options, see
“Microservice Command Arguments” on page 1-17.

3 Once the container is running in Docker, you can check the status of the service by opening the
following URL in a web browser:

http://hostname:9900/api/health

Note Use localhost as the hostname if Docker is running on the same machine as the browser.

If the service is ready to receive requests, you see the following message:

"status: ok"
4 Test the running service. In the terminal, use the curl command to send a JSON query with the

input argument 4 to the service through port 9900. For more information on constructing JSON
requests, see “JSON Representation of MATLAB Data Types” (MATLAB Production Server).

curl -v -H Content-Type:application/json -d '{"nargout":1,"rhs":[4]}' \
"http://hostname:9900/magicarchive/mymagic"

The output is:

{"lhs":[{"mwdata":[16,5,9,4,2,11,7,14,3,10,6,15,13,8,12,1],\
"mwsize":[4,4],"mwtype":"double"}]}

Note To use curl on Windows, use the following syntax:

curl -v -H Content-Type:application/json -d "{\"nargout\":1,\"rhs\":[4]}" \
"http://hostname:9900/magicarchive/mymagic"

1 Deployable Archive Creation

1-14

5 To stop the service, use the following command to display the container id.

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
df7710d69bf0 micro-magic "/opt/matlabruntime/…" 6 minutes ago Up 6 minutes 0.0.0.0:9900->9910/tcp epic_herschel

Stop the service using the specified container id.

docker stop df7710d69bf0

Share Docker Image
You can share your Docker image in various ways.

• Push your image to the Docker central registry DockerHub, or to your private registry. This is the
most common workflow.

• Save your image as a tar archive and share it with others. This workflow is suitable for immediate
testing.

For details about pushing your image to DockerHub or your private registry, consult the Docker
documentation.

Save Docker Image as Tar Archive

To save your Docker image as a tar archive, open a system command window, navigate to the Docker
context folder, and type the following.

docker save micro-magic -o micro-magic.tar

This command creates a file named micro-magic.tar in the current folder. Set the appropriate
permissions (for example, using chmod) prior to sharing the tarball with other users.

Load Docker Image from Tar Archive

Load the image contained in the tarball on the end user machine.

docker load --input micro-magic.tar

Verify that the image is loaded.

docker images

Run Docker Image

docker run --rm -p 9900:9910 micro-magic

See Also
compiler.package.microserviceDockerImage |
compiler.build.productionServerArchive

More About
• “Microservice Command Arguments” on page 1-17
• “Create Deployable Archive for MATLAB Production Server” on page 1-2

 Create Microservice Docker Image

1-15

• “Client Programming” (MATLAB Production Server)
• “Package MATLAB Standalone Applications into Docker Images”
• “JSON Representation of MATLAB Data Types” (MATLAB Production Server)
• “MATLAB Function Signatures in JSON”

1 Deployable Archive Creation

1-16

Microservice Command Arguments
Use single or double quotes to enclose special characters. For example:

docker run --rm -p 9900:9910 yolov4od-microservice --cors-allowed-origins '*' -l trace &
docker run --rm -p 9900:9910 yolov4od-microservice --cors-allowed-origins "*" -l trace &

Option Description Note
-a,--archive FILE Path to the deployable archive

(CTF file).
Do not use this option when calling docker
run; the deployed archive included in the
container is specified in the entry point.

--attach-cache CACHE Provide information about the
external cache.

Specify CACHE in the format of
connection:provider:host:port.

--attach-cache-key
KEY

Optional key for the external
cache.

None.

-c,--config-
file=muserve_config

Specify a configuration file located
in matlabroot/bin/glnxa64.

Default file name is muserve_config. File
must be in TOML or INI format.

--cors-allowed-
origins "LIST"

Enable cross-origin resource
sharing (CORS) and specify the
domain origins that are allowed to
access the server.

Specify LIST as * or a list of comma-separated
domain origins.

--disable-control-c Disable keyboard interruption for
the server.

Default behavior is to enable keyboard
interruption.

--display,--no-
display

Enable or disable X11 display for
worker processes on UNIX
systems.

Default behavior is to disable display.

--enable-discovery,--
disable-discovery

Enable or disable access to the
discovery API.

Default behavior is to enable access to the
discovery API.

--enable-http-
pipelining,--disable-
http-pipelining

Enable or disable parallel
execution of pipelined requests.

Default behavior is to enable parallel pipeline
execution.

--enable-metrics,--
disable-metrics

Enable or disable access to the
metrics API.

Default behavior is to enable access to the
metrics API.

--endpoint-root FILE Path to the folder containing
server endpoint files.

By default, endpoint files are not generated.

-h,--help Display the microservice command
line arguments and exit.

None.

--hide-matlab-error-
stack

Hide the MATLAB error stack sent
to clients.

Default behavior is to send the error stack.

--http PORT HTTP interface port in the Docker
container.

Default port is 9910.

--http-linger-
threshold SIZE

Amount of data the server
discards after an HTTP error and
before the server closes the TCP
connection.

Specify SIZE as an integer followed by an
optional size unit. Allowed size units are B, KB,
and MB. If you specify no size unit, the unit is
assumed to be B. Default size is unlimited.

 Microservice Command Arguments

1-17

Option Description Note
--https PORT HTTPS interface port in the

Docker container. Use this option
to enable HTTPS.

Default behavior is to use HTTP. If you use this
option, you must also specify --x509-
private-key and --x509-cert-chain.

-l,--log-severity
OPTION

Level of detail at which to log
information to stdout.

Specify OPTION as error, information
(default), or trace.

--log-format OPTION Text format for logs written to
stdout.

Specify OPTION as text-plain (default),
text-json, or text-xml.

--merge-worker-
streams

Merge worker stdout and
stderr streams into a single
stream.

Default behavior is to keep the streams
separate.

--pid-root PATH Path to folder containing PID files. By default, PID files are not generated.
--profile "(on|off)
OBJECT"

Enable or disable the logging of
server profile information to
stdout.

Specify OBJECT as server, server.request,
server.request.archive,
server.request.client, server.worker,
or server.worker.pool.

--request-size-limit
SIZE

Maximum allowed request size. Specify SIZE as an integer followed by an
optional size unit. Allowed size units are B, KB,
MB, and GB. If you specify no size unit, the
unit is assumed to be B. Default size is 64MB.

--routes-file FILE Path to the routes JSON file for the
web request handler.

None.

--ssl-allowed-client
CLIENT CN

Authorize clients to access the
deployed archive (CTF file) based
on the client certificate common
name (CN).

Specify CLIENT as client1 CN, client2
CN, ..., clientN CN.

--ssl-ciphers OPTION List of SSL cipher suites used for
encryption.

Specify OPTION as one of the following:

• ALL (default) — All cipher suites except the
eNULL ciphers.

• HIGH — Cipher suites with key lengths
larger than 128 bits, and some cipher suites
with 128-bit keys.

--ssl-protocols
PROTOCOLS

List of allowed SSL protocols. Protocols supported: TLSv1, TLSv1.1, TLSv1.2.

--ssl-tmp-dh-param
FILE

Path to file containing a
pregenerated ephemeral DH key.

None.

--ssl-tmp-ec-param
ELLIPTIC-CURVE-NAME

Name of elliptic curve used for
ECDHE ciphers.

ECDHE ciphers are enabled by default.

--ssl-verify-peer-
mode OPTION

Level of client verification
required by the server.

Specify OPTION as no-verify-peer (default)
or verify-peer-require-peer-cert

--use-single-comp-
thread

Limit MATLAB to a single
computational thread.

Default behavior is to use multithreading
capabilities of the host computer.

--user-data "KEY
VALUE"

Associate MATLAB data value with
a key.

KEY and VALUE are strings.

1 Deployable Archive Creation

1-18

Option Description Note
--worker-restart-
interval INTERVAL

Time interval at which a server
stops and restarts its workers.
Specify interval in the format
[hour]:[minute]:[second].
[millisecond].

Default interval is 12:00:00.

--worker-restart-
memory-limit SIZE

Size threshold at which the server
considers restarting a worker.

Specify SIZE as an integer followed by an
optional size unit. Allowed size units are B, KB,
and MB. If you specify no size unit, the unit is
assumed to be B.

--worker-restart-
memory-limit-interval
INTERVAL

Time interval for which a worker
can exceed its memory limit
before restarting. Specify interval
in the format [hour]:[minute]:
[second].[millisecond].

None.

--x509-ca-file-store
FILE

Path to certificate authority (CA)
file to verify peer certificates.

None.

--x509-cert-chain
FILE

Path to server certificate chain file
in PEM format.

You must specify this property if you specify --
https.

--x509-passphrase
FILE

Path to file that contains the
passphrase of the encrypted
private key.

None.

--x509-private-key
FILE

Path to the private key. The key
must be in PEM format.

You must specify this property if you specify --
https.

--x509-use-crl Use the certificate revocation list
(CRL) from the certificate
authority store.

None.

--x509-use-system-
store

Use the operating system
truststore.

None.

See Also

Related Examples
• “Create Microservice Docker Image” on page 1-12

 Microservice Command Arguments

1-19

Deploy Object Detection Model as Microservice
Supported platform: Linux, Windows, macOS

This example shows how to create a microservice Docker image from a MATLAB object detection
model. The microservice image created by MATLAB Compiler SDK provides an HTTP/HTTPS
endpoint to access MATLAB code.

You package a MATLAB function into a deployable archive, and then create a Docker image that
contains the archive and a minimal MATLAB Runtime package. You can then run the image in Docker
and make calls to the service using any of the MATLAB Production Server client APIs.

Required Products
Type ver at the MATLAB command prompt to verify whether the following products are installed:

• MATLAB
• Image Processing Toolbox™
• Deep Learning Toolbox™
• Computer Vision Toolbox™
• MATLAB Compiler™
• MATLAB Compiler SDK

Type matlabshared.supportpkg.getInstalled at the MATLAB command prompt to verify
whether the following add-on is installed:

• Computer Vision Toolbox Model for YOLO v4 Object Detection

If you need to install the add-on, click the Add-Ons icon in the MATLAB toolstrip and search for the
add-on. You can also download and install it from the MathWorks File Exchange.

Prerequisites
• Verify that you have MATLAB Compiler SDK installed on the development machine.
• Verify that you have Docker installed and configured on the development machine by typing

[~,msg] = system('docker version') in a MATLAB command window.

Note If you are using WSL, use the command [~,msg] = system('wsl docker version')
instead.

If you do not have Docker installed, follow the instructions on the Docker website to install and set
up Docker.

docs.docker.com/engine/install/

• To build microservice images on Windows, you must install either Docker Desktop or Docker
on Windows Subsystem for Linux v2 (WSL2). To install Docker Desktop, see
docs.docker.com/desktop/windows/install/.

1 Deployable Archive Creation

1-20

https://www.mathworks.com/matlabcentral/fileexchange/107969-computer-vision-toolbox-model-for-yolo-v4-object-detection
https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/windows/install/

For instructions on how to install Docker on WSL2, see https://www.mathworks.com/
matlabcentral/answers/1758410-how-do-i-install-docker-on-wsl2.

• If the computer you are using is not connected to the Internet, you must download the MATLAB
Runtime installer for Linux from a computer that is connected to the Internet and transfer the
installer to the computer that is not connected to the Internet. Then, on the offline machine, run
the command compiler.runtime.createInstallerDockerImage(filepath), where
filepath is the path to the MATLAB Runtime installer archive.

You can download the installer from the MathWorks website.

https://www.mathworks.com/products/compiler/matlab-runtime.html

Create MATLAB Function to Detect Objects
For this example, write an object detection function named cvt.m using the following code.

function [bboxes, scores, labels] = cvt(imageUrl)
iminfo = imfinfo(imageUrl);
 % Read image
 % If indexed image, read colormap and convert to rgb
 if strcmp(iminfo.ColorType,'indexed') == 1
 [im, cmap] = webread(imageUrl, 'Timeout', 10);
 im = ind2rgb(im, cmap);
 else
 im = webread(imageUrl, 'Timeout', 10);
 end
% Add pretrained YOLO v4 dataset tinyYOLOv4COCO.mat to MATLAB path for testing
% Comment or remove the next 2 lines of code prior to deploying as microservice
detectorPath = [matlabshared.supportpkg.getSupportPackageRoot, '/toolbox/vision/supportpackages/yolov4/data'];
addpath(detectorPath)
load('tinyYOLOv4COCO.mat', 'detector');

% Detect objects in image using detector
[bboxes,scores,labels] = detect(detector,im);
labels = cellstr(labels);

Test the function from the MATLAB command line:

%% Specify image URL
imageUrl = "https://www.mathworks.com/help/examples/deeplearning_shared/win64/TrafficSignDetectionAndRecognitionExample_02.png"
%% Display image
imageFile = "trafficimage.jpg";
imageFileFullPath = websave(imageFile, imageUrl);
[im, cmap] = imread(imageFileFullPath);
imshow(im, cmap)
%% Detect objects in image
[bboxes, scores, labels] = cvt(imageUrl)

bboxes =
 2×4 single matrix
 445.3871 326.4009 223.3270 98.7086
 504.2861 271.4571 45.7471 41.0955
scores =
 2×1 single column vector
 0.9151
 0.6610

 Deploy Object Detection Model as Microservice

1-21

https://www.mathworks.com/matlabcentral/answers/1758410-how-do-i-install-docker-on-wsl2
https://www.mathworks.com/matlabcentral/answers/1758410-how-do-i-install-docker-on-wsl2
https://www.mathworks.com/products/compiler/matlab-runtime.html

labels =
 2×1 cell array
 {'truck' }
 {'stop sign'}

Create Deployable Archive

Caution Comment the following lines of code in the cvt.m file prior to creating a deployable
archive.

% detectorPath = [matlabshared.supportpkg.getSupportPackageRoot, '/toolbox/vision/supportpackages/yolov4/data'];
% addpath(detectorPath)

Package the cvt function into a deployable archive using the
compiler.build.productionServerArchive function.

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.productionServerArchive.
buildResults = compiler.build.productionServerArchive('cvt.m', ...
 'ArchiveName','yolov4od','Verbose',true, ...
 'SupportPackages',{'Computer Vision Toolbox Model for YOLO v4 Object Detection'});

buildResults =
 Results with properties:

 BuildType: 'productionServerArchive'
 Files: {'/home/mluser/work/yolov4odproductionServerArchive/yolov4od.ctf'}
 IncludedSupportPackages: {'Computer Vision Toolbox Model for YOLO v4 Object Detection'}
 Options: [1×1 compiler.build.ProductionServerArchiveOptions]

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

Once the build is complete, the function creates a folder named
yolov4odproductionServerArchive in your current directory to store the deployable archive.

Package Archive into Microservice Docker Image
• Build the microservice Docker image using the buildResults object that you created.

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.package.microserviceDockerImage.
compiler.package.microserviceDockerImage(buildResults,...
 'ImageName','yolov4od-microservice',...
 'DockerContext',fullfile(pwd,'microserviceDockerContext'));

The function generates the following files within a folder named microserviceDockerContext
in your current working directory:

• applicationFilesForMATLABCompiler/yolov4od.ctf — Deployable archive file.
• Dockerfile — Docker file that specifies Docker run-time options.
• GettingStarted.txt — Text file that contains deployment information.

1 Deployable Archive Creation

1-22

Test Docker Image
1 In a system command window, verify that your yolov4od-microservice image is in your list of

Docker images.

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
yolov4od-microservice latest 4401fa2bc057 33 seconds ago 7.56GB
matlabruntime/r2023a/update0/4200000000000000 latest 5259656e4a32 24 minutes ago 7.04GB

2 Run the yolov4od-microservice microservice image from the system command prompt.

docker run --rm -p 9900:9910 yolov4od-microservice -l trace &

Port 9910 is the default port exposed by the microservice within the Docker container. You can
map it to any available port on your host machine. For this example, it is mapped to port 9900.

You can specify additional options in the Docker command. For a complete list of options, see
“Microservice Command Arguments” on page 1-17.

3 Once the microservice container is running in Docker, you can check the status of the service by
going to the following URL in a web browser:

http://hostname:9900/api/health

If the service is ready to receive requests, you see the following message:

"status: ok"
4 Test the running service. In the terminal, use the curl command to send a JSON query with the

input argument 4 to the service through port 9900. For more information on constructing JSON
requests, see “JSON Representation of MATLAB Data Types” (MATLAB Production Server).

curl -v -H Content-Type:application/json \
-d '{"nargout":3,"rhs":["https://www.mathworks.com/help/examples/deeplearning_shared/win64/TrafficSignDetectionAndRecognitionExample_02.png"]}' \
"http://hostname:9900/yolov4od/cvt" | jq -c

The output is:

{"lhs":[{"mwdata":[445.387146,504.286102,326.40094,271.457092,223.327026,45.7471,98.7086487,41.09552],"mwsize":[2,4],"mwtype":"single"},
{"mwdata":[0.91510725,0.661022],"mwsize":[2,1],"mwtype":"single"},
{"mwdata":[{"mwdata":["truck"],"mwsize":[1,5],"mwtype":"char"},
{"mwdata":["stop sign"],"mwsize":[1,9],"mwtype":"char"}],"mwsize":[2,1],"mwtype":"cell"}]}

You can also test from the MATLAB desktop:

%% Import MATLAB HTTP interface packages
import matlab.net.*
import matlab.net.http.*
import matlab.net.http.fields.*

%% Setup message body
body = MessageBody;
body.Payload = ...
 '{"nargout": 3,"rhs": ["https://www.mathworks.com/help/examples/deeplearning_shared/win64/TrafficSignDetectionAndRecognitionExample_02.png"]}';

%% Setup request
requestUri = URI('http://hostname:9900/yolov4od/cvt');
options = matlab.net.http.HTTPOptions('ConnectTimeout',20,...
 'ConvertResponse',false);

 Deploy Object Detection Model as Microservice

1-23

request = RequestMessage;
request.Header = HeaderField('Content-Type','application/json');
request.Method = 'POST';
request.Body = body;

%% Send request & view raw response
response = request.send(requestUri, options);
disp(response.Body.Data)

%% Decode JSON
lhs = mps.json.decoderesponse(response.Body.Data);

%% Clean up printed output
for i = 1:length(lhs)
 [r,c] = size(lhs{i});
 if ~iscell(lhs{i}) && c==1
 tmp(:,i) = num2cell(lhs{i});
 elseif ~iscell(lhs{i}) && c~=1
 tmp(:,i) = num2cell(lhs{i},2);
 else
 tmp(:,i) = lhs{i};
 end
end
%% Display response as a table
T = cell2table(tmp,'VariableNames',{'Boxes', 'Scores', 'Labels'})

The output is:

T =

 2×3 table

 Boxes Scores Labels
 ____________________________________ _______ _____________

 445.39 326.4 223.33 98.709 0.91511 {'truck' }
 504.29 271.46 45.747 41.096 0.66102 {'stop sign'}

5 To stop the service, use the following command to display the container id.

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
f372b8b574e8 yolov4od-microservice "/opt/matlabruntime/…" 6 hours ago Up 6 hours 0.0.0.0:9900->9910/tcp distracted_panini

Stop the service using the specified container id.

docker stop f372b8b574e8

Share Docker Image
You can share your Docker image in various ways.

• Push your image to the Docker central registry DockerHub, or to your private registry. This is the
most common workflow.

• Save your image as a tar archive and share it with others. This workflow is suitable for immediate
testing.

1 Deployable Archive Creation

1-24

For details about pushing your image to DockerHub or your private registry, consult the Docker
documentation.

Save Docker Image as Tar Archive

To save your Docker image as a tar archive, open a system command window, navigate to the Docker
context folder, and type the following.

docker save yolov4od-microservice -o yolov4od-microservice.tar

This command creates a file named yolov4od-microservice.tar in the current folder. Set the
appropriate permissions (for example, using chmod) prior to sharing the tarball with other users.

Load Docker Image from Tar Archive

Load the image contained in the tarball on the end user machine.

docker load --input yolov4od-microservice.tar

Verify that the image is loaded.

docker images

Run Docker Image

docker run --rm -p 9900:9910 yolov4od-microservice

See Also
compiler.package.microserviceDockerImage |
compiler.build.productionServerArchive

More About
• “Create Deployable Archive for MATLAB Production Server” on page 1-2
• “Client Programming” (MATLAB Production Server)
• “JSON Representation of MATLAB Data Types” (MATLAB Production Server)
• “MATLAB Function Signatures in JSON”
• “Package MATLAB Standalone Applications into Docker Images”

 Deploy Object Detection Model as Microservice

1-25

Write Deployable MATLAB Code

• “MATLAB Coding Guidelines” on page 2-2
• “State-Dependent Functions” on page 2-3
• “Deploying MATLAB Functions Containing MEX Files” on page 2-5
• “Supported MATLAB Data Types for Client and Server Marshaling” on page 2-6
• “Modifying Deployed Functions” on page 2-7
• “Use Parallel Computing Resources in Deployable Archives” on page 2-8

2

MATLAB Coding Guidelines
When writing MATLAB code for deployment to MATLAB Production Server you must adhere to the
same guidelines as when writing code for deployment with MATLAB Compiler or MATLAB Compiler
SDK. In addition, code deployed to MATLAB Production Server must adhere to additional guidelines:

• functions cannot depend on nor change MATLAB state.

Functions deployed with MATLAB Production Server may not always execute on the same instance
of the MATLAB Runtime. Each worker access a different MATLAB Runtime instance.

• explicitly use varargin and varargout for functions with variable inputs and outputs.
• avoid MATLAB figure or GUI code.

Deployed MATLAB code runs on the server, any figures or GUIs created during runtime will show
up on the server machine, not the client machine. If figures or GUIs are required to run to create
the function results, make sure to close these figures at the end of your code to avoid left over
windows and leaking resources on the server.

See Also

More About
• “State-Dependent Functions” on page 2-3
• “Write Deployable MATLAB Code”

2 Write Deployable MATLAB Code

2-2

State-Dependent Functions
MATLAB code that you want to deploy often carries state—a specific data value in a program or
program variable.

Does My MATLAB Function Carry State?
Example of carrying state in a MATLAB program include, but are not limited to:

• Modifying or relying on the MATLAB path and the Java® class path
• Accessing MATLAB state that is inherently persistent or global. Some example of this include:

• Random number seeds
• Handle Graphics® root objects that retain data
• MATLAB or MATLAB toolbox settings and preferences

• Creating global and persistent variables.
• Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a MATLAB object in any

way, it loads into MATLAB.
• Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but also relies on it for your function to properly
execute, you must take additional steps (listed in this section) to ensure state retention.

When you deploy your application, consider cases where you carry state, and safeguard against that
state’s corruption if needed. Assume that your state may be changed and code defensively against
that condition.

The following are examples of “defensive coding” practices:

Reset System-Generated Values in the Deployed Application

If you are using a random number seed, for example, reset it in your deployed application program to
ensure the integrity of your original MATLAB function.

Validate Global or Persistent Variable Values

If you must use global or persistent variables, always validate their value in your deployed application
and reset if needed.

Ensure Access to Data Caches

If your function relies on cached replies to previous requests, for instance, ensure your deployed
system and application has access to that cache outside of the MATLAB environment.

Use Simple Data Types When Possible

Simple data types are usually not tied to a specific application and means of storing state. Your
options for choosing an appropriate state-preserving tool increase as your data types become less
complicated and specific.

 State-Dependent Functions

2-3

Avoid Using MATLAB Callback Functions

Avoid using MATLAB callbacks, such as timer. Callback functions have the ability to interrupt and
override the current state of the MATLAB Production Server worker and may yield unpredictable
results in multiuser environments.

Techniques for Preserving State
The most appropriate method for preserving state depends largely on the type of data you need to
save.

• Databases provide the most versatile and scalable means for retaining stateful data. The database
acts as a generic repository and can generally work with any application in an enterprise
development environment. It does not impose requirements or restrictions on the data structure
or layout. Another related technique is to use comma-delimited files, in applications such as
Microsoft Excel.

• Data that is specific to a third-party programming language, such as Java and C#, can be retained
using a number of techniques. Consult the online documentation for the appropriate third-party
vendor for best practices on preserving state.

Caution Using MATLAB LOAD and SAVE functions is often used to preserve state in MATLAB
applications and workspaces. While this may be successful in some circumstances, it is highly
recommended that the data be validated and reset if needed, if not stored in a generic repository
such as a database.

2 Write Deployable MATLAB Code

2-4

Deploying MATLAB Functions Containing MEX Files
If the MATLAB function you are deploying uses MEX files, ensure that the system running MATLAB
Production Server is running the version of MATLAB Compiler used to create the MEX files.

Coordinate with your server administrator and application developer as needed.

 Deploying MATLAB Functions Containing MEX Files

2-5

Supported MATLAB Data Types for Client and Server
Marshaling

MATLAB Production Server supports and partially supports certain MATLAB data types for
marshaling between client programs and server instances. However, certain MATLAB data types are
unsupported.

Supported Data Types
• Numeric types – Integers and floating-point numbers
• Character arrays
• Structures
• Cell arrays
• Logical

Partially Supported Data Types
• Complex numbers — Only the Python® and C client libraries and the MATLAB Production Server

“RESTful API for MATLAB Function Execution” (MATLAB Production Server) and JSON support
complex numbers.

• String arrays, enumerations, and datetime arrays — Only the MATLAB Production Server
RESTful API and JSON support these data types.

Unsupported Data Types
Some of the MATLAB data types that MATLAB Production Server does not support include the
following.

• MATLAB function handles
• Sparse matrices
• Tables
• Timetables

See Also

More About
• “JSON Representation of MATLAB Data Types” (MATLAB Production Server)

2 Write Deployable MATLAB Code

2-6

Modifying Deployed Functions
After you have built a deployable archive, you are able to modify your MATLAB code, recompile, and
see the change instantly reflected in the archive hosted on your server. This is known as hot
deploying or redeploying a function.

To hot deploy, you must have a server created and running, with the built deployable archive located
in the server’s auto_deploy folder.

The server deploys the updated version of your archive when one of the following occurs:

• Compiled archive has an updated time stamp
• Change has occurred to the archive contents (new file or deleted file)

It takes a maximum of five seconds to redeploy a function using hot deployment. It takes a maximum
of ten seconds to undeploy a function (remove the function from being hosted).

See Also
auto-deploy-root

More About
• “Deploy Archive to MATLAB Production Server” (MATLAB Production Server)

 Modifying Deployed Functions

2-7

Use Parallel Computing Resources in Deployable Archives
To take advantage of resources from Parallel Computing Toolbox, you can pass a cluster profile to a
MATLAB application that you deploy to MATLAB Production Server.

Cluster profiles let you define parallel computing properties for your cluster, such as information
about the cluster for your MATLAB code to use and the number of workers in a parallel pool. You
apply these properties when you create a cluster, job, and task objects in your MATLAB application.
For more information on specifying cluster profile preferences, see “Specify Your Parallel
Preferences” (Parallel Computing Toolbox). To manage cluster profiles, see “Discover Clusters and
Use Cluster Profiles” (Parallel Computing Toolbox).

You can also package MATLAB functions that use parallel language commands into a deployable
archive and deploy the archive to MATLAB Production Server. For information on creating and
sharing deployable archives, see “Create Deployable Archive for MATLAB Production Server”
(MATLAB Production Server) and “Deploy Archive to MATLAB Production Server” (MATLAB
Production Server).

Deployed MATLAB functions are able to find the parallel cluster profile through the Cluster Profile
Manager or an exported profile.

Use Profile Available in Cluster Profile Manager
When you package a MATLAB function into a deployable archive, all profiles available in the Cluster
Profile Manager are available in the archive by default. This option is useful when you do not expect
the profile to change after deployment.

Link to Exported Profile
If you expect the cluster profile to change, you can export the cluster profile first, then load the
profile either programmatically in your MATLAB code or use the --user-data MATLAB Production
Server configuration property. For exporting the cluster profile, see “Import and Export Cluster
Profiles” (Parallel Computing Toolbox).

Load Profile Using MATLAB Code

To load the exported profile in your MATLAB function, use parallel.importProfile. For example,
the following sample code imports a profile and creates a cluster object using an exported profile.

clustername = parallel.importProfile('ServerIntegrationTest.settings');
cluster = parcluster(clustername);

Load Profile Using Server Configuration Property

To load the exported profile using the MATLAB Production Server configuration property, set the --
user-data property to pass key-value parameters that represent the exported profile. Set the key to
ParallelProfile and the value to the path to the exported cluster profile followed by the profile
file name. For example, to load a profile called ServerIntegrationTest.settings, set the
property as follows:

--user-data ParallelProfile /sandbox/server_integration/
ServerIntegrationTest.settings

2 Write Deployable MATLAB Code

2-8

If you use the command line to manage the dashboard, edit the main_config server configuration
file to specify the --user-data property. If you use the dashboard to manage MATLAB Production
Server, use the Additional Data field in the Settings tab to specify the --user-data property.

The cluster profile that you provide to the --user-data property is automatically set as the default.
Therefore, your MATLAB code does not have to explicitly load it and you can use the default cluster
as follows:

cluster = parcluster();

Reuse Existing Parallel Pool in Deployable Archive
The following example uses gcp to check if a parallel pool of workers exists. If a pool does not exist, it
creates a pool of 4 workers using parpool.

pool = gcp('nocreate');
if isempty(pool)
 disp("Creating a myCluster")
 parpool('myCluster', 4);
else
 disp('myCluster pool already exists')
end

Limitations
Deployable archives that use parallel computing cannot share parallel pools with other deployable
archives.

See Also
parallel.importProfile | parallel.exportProfile | gcp | parpool

Related Examples
• “Using MATLAB Runtime User Data Interface”
• “Create Deployable Archive for MATLAB Production Server” (MATLAB Production Server)
• “Run MATLAB Parallel Server and MATLAB Production Server on Azure” (MATLAB Production

Server)

 Use Parallel Computing Resources in Deployable Archives

2-9

Persistence

3

Data Caching Basics
Persistence provides a mechanism to cache data between calls to MATLAB code running on a server
instance. A persistence service runs separately from the server instance and can be started and
stopped manually. A connection name links a server instance to a persistence service. A persistence
service uses a persistence provider to store data. Currently, Redis is the only supported persistence
provider. The connection name is used in MATLAB application code to create a data cache in the
linked persistence service.

Typical Workflow for Data Caching
Steps Command Line Dashboard
1. Create file
mps_cache_config

Manually create a JSON file and place it
in the config folder of the server
instance. Do not include the .json
extension in the filename.

Automatically created.

2. Start persistence
service

Use mps-cache to start a persistence
service.

For testing purposes, you can create a
persistence service controller object
using mps.cache.control.

• Create a persistence service.
• Add the persistence service to

a server instance using a
connection name.

• Start the persistence service.
• Attach the connection

associated with a persistence
service to a server instance.

3. Create a data cache Use mps.cache.connect to create a
data cache.

Use mps.cache.connect to
create a data cache.

Configure Server to Use Redis
Create Redis Configuration File

Before starting a persistence service for an on-premises server instance from the system command
prompt, you must create a JSON file called mps_cache_config (no .json extension) and place it in
the config folder of the server instance. If you use the dashboard to manage an on-premises server
instance and for server deployments on the cloud, the mps_cache_config file is automatically
created on server creation.

mps_cache_config

{
 "Connections": {
 "<connection_name>": {
 "Provider": "Redis",
 "Host": "<hostname>",
 "Port": <port_number>,
 "Key": <access_key>
 }
 }
}

3 Persistence

3-2

Specify the <connection_name>, <hostname>, and <port_number> in the JSON file. The host
name can either be localhost or a remote host name obtained from an Azure® Redis cache
resource. If you use Azure Cache for Redis, you must specify an access key. To use an Azure Redis
cache, you need a Microsoft Azure account.

You can specify multiple connections in the file mps_cache_config. Each connection must have a
unique name and a unique (host, port) pair. If you are using the persistence service through the
dashboard, the file mps_cache_config is automatically created in the config folder of the server
instance.

Install WSL for Server Instances Running on Windows

If your MATLAB Production Server instance runs on a Windows machine, you require additional
configuration. The following configuration is not required for server instances that run on Linux and
macOS.

• You need to install Windows Subsystem for Linux (WSL). For details on installing WSL, see
Microsoft documentation.

• If the MATLAB Production Server software is installed on a network drive, you must mount the
network drive in WSL.

Example: Increment Counter Using Data Cache
This example shows you how to use persistence to increment a counter using a data cache. The
example presents two workflows: a testing workflow that uses the MATLAB and a deployment
workflow that requires an active server instance.

Testing Workflow in MATLAB Compiler SDK

1 Create a persistence service that uses Redis as the persistence provider and start the service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)
start(ctrl)

2 Write MATLAB code that creates a cache and then updates a counter using the cache. Name the
file myCounter.m

myCounter.m
function x = myCounter(cacheName,connectionName)

% create a data cache
c = mps.cache.connect(cacheName,'Connection',connectionName);

% if the key 'count' doesn't exist yet, initialize it
if isKey(c,'count') == false
 put(c,'count',0)
else
 value = get(c,'count');
 % increment the counter
 put(c,'count', value+1);
end
x = get(c,'count');

3 Test the counter.

for i = 1:5
 y(i) = myCounter('myCache','myRedisConnection');

 Data Caching Basics

3-3

https://docs.microsoft.com/windows/wsl/

end
y

y =

 0 1 2 3 4

Deployment Workflow Using MATLAB Production Server

Before you deploy code that uses persistence to a server instance, start the persistence service and
attach it to the server instance. You can start the persistence service from the system command line
using mps-cache or follow the steps in the dashboard. This example assumes your server instance
uses the default host and port: localhost:9910.

1 Package the file myCounter.m using the Production Server Compiler app or mcc.
2 Deploy the archive (myCounter.ctf file) to the server.
3 Test the counter. You can make calls to the server using the “RESTful API for MATLAB Function

Execution” (MATLAB Production Server) from the MATLAB desktop.
rhs = {['myCache'],['myRedisConnection']};
body = mps.json.encoderequest(rhs,'Nargout',1);

options = weboptions;
options.ContentType = 'text';
options.MediaType = 'application/json';
options.Timeout = 30;

for i = 1:5
response = webwrite('http://localhost:9910/myCounter/myCounter', body, options);
x(i) = mps.json.decoderesponse(response);
end
x = [x{:}]

x =

 0 1 2 3 4

As expected, the results from the testing environment workflow and the deployment environment
workflow are the same.

See Also
mps.cache.Controller | mps.cache.DataCache | mps.sync.TimedMATFileMutex |
mps.sync.TimedRedisMutex | mps.cache.control | mps.cache.connect | mps.sync.mutex

More About
• “Manage Application State in Deployed Archives” on page 3-5

3 Persistence

3-4

Manage Application State in Deployed Archives
This example shows how to manage persistent data in application archives deployed to MATLAB
Production Server. It uses the MATLAB Production Server “RESTful API for MATLAB Function
Execution” (MATLAB Production Server) and JSON to connect one or more instances of a MATLAB
app to an archive deployed on the server.

MATLAB Production Server workers are stateless. Persistence provides a mechanism to maintain
state by caching data between multiple calls to MATLAB code deployed on the server. Multiple
workers have access to the cached data.

The example describes two workflows.

1 A testing workflow for testing the functionality of the application in a MATLAB desktop
environment before deploying it to the server.

2 A deployment workflow that uses an active MATLAB Production Server instance to deploy the
archive.

To demonstrate how to use persistence, this example uses the traveling salesman problem, which
involves finding the shortest possible route between cities. This implementation stores a persistent
MATLAB graph object in the data cache. Cities form the nodes of the graph and the distances
between the cities form the weights associated with the graph edges. In this example, the graph is a
complete graph. The testing workflow uses the local version of the route-finding functions. The
deployment workflow uses route-finding-functions that are packaged into an archive and deployed to
the server. The MATLAB app calls the route-finding functions. These functions read from and write
graph data to the cache.

The code for the example is located at , where $MPS_INSTALL is the location where MATLAB
Production Server is installed.

To host a deployable archive created with the Production Server Compiler app, you must have a
version of MATLAB Runtime installed that is compatible with the version of MATLAB you use to
create your archive. For more information, see “Supported MATLAB Runtime Versions for MATLAB
Production Server” (MATLAB Production Server).

1. “Step 1: Write MATLAB Code that uses Persistence Functions” on page 3-5
2. “Step 2: Run Example in Testing Workflow” on page 3-9
3. “Step 3: Run Example in Deployment Workflow” on page 3-10

Step 1: Write MATLAB Code that uses Persistence Functions
1 Write a function to initialize persistent data

Write a function to check whether a graph of cities and distances exists in the data cache. If the
graph does not exist, create it from an Excel spreadsheet that contains the distance data and
write it to the cache. Because only one MATLAB Production Server worker at a time can perform
this write operation, use a synchronization lock to ensure that data initialization happens only
once.

Connect to the cache that stores the distance data or create it if it does not exist using
mps.cache.connect. Acquire a lock on a mutex using mps.sync.mutex for the duration of the
write operation. Release the lock once the data is written to the cache.

 Manage Application State in Deployed Archives

3-5

Initialize the distance data using the loadDistanceData function.

function tf = loadDistanceData(connectionName, cacheName)
 c = mps.cache.connect(cacheName,'Connection',connectionName);
 tries = 0;

 while isKey(c,'Distances') == false && tries < 6
 lk = mps.sync.mutex('DistanceData','Connection',connectionName);
 if acquire(lk,10)
 if isKey(c,'Distances') == false
 g = initDistanceData('Distances.xlsx');
 c.Distances = g;
 end
 release(lk);
 end
 tries = tries + 1;
 end
 tf = isKey(c,'Distances');
end

2 Write functions to read persistent data

Write a function to read the distance data graph from the data cache. Because reading data from
the cache is an idempotent operation, you do not need to use synchronization locks. Connect to
the cache using mps.cache.connect and then retrieve the graph.

Read the graph from the cache and convert it into a cell array using the listDestinations
function.

Calculate the shortest possible route using the findRoute function. Use the nearest neighbor
algorithm, by starting at a given city and repeatedly visiting the next nearest city until all cities
have been visited.

function destinations = listDestinations()
 c = mps.cache.connect('TravelingSalesman','Connection','ScratchPad');
 if loadDistanceData('ScratchPad','TravelingSalesman') == false
 error('Failed to load distance data. Cannot continue.');
 end

 g = c.Distances;
 destinations = table2array(g.Nodes);
end

function [route,distance] = findRoute(start,destinations)
 c = mps.cache.connect('TravelingSalesman','Connection','ScratchPad');
 if loadDistanceData('ScratchPad','TravelingSalesman') == false
 error('Failed to load distance data. Cannot continue.');
 end

 g = c.Distances;
 route = {start};
 distance = 0;
 current = start;

 while ~isempty(destinations)
 minDistance = Inf;
 nextSegment = {};
 for n = 1:numel(destinations)

3 Persistence

3-6

 [p,d] = shortestpath(g,current,destinations{n});
 if d < minDistance
 nextSegment = p(2:end);
 minDistance = d;
 end
 end

 current = nextSegment{end};
 distance = distance + minDistance;
 destinations = setdiff(destinations,current);
 route = [route nextSegment];
 end
end

3 Write a function to modify persistent data

Write a function to add a new city. Adding a city modifies the graph stored in the data cache.
Because this operation requires writing to the cache, use the mps.sync.mutex function
described in Step 1 for locking. After adding a city, check that the graph is still complete by
confirming that the distance between every pair of cities is known.

Add a city using the addDestination function. Adding a city adds a new graph node name
along with new edges connecting this node to all existing nodes in the graph. The weights of the
newly added edges are given by the vector distances. destinations is a cell array of
character vectors that has the names of other cities in the graph.

function count = addDestination(name, destinations, distances)
 count = 0;
 c = mps.cache.connect('TravelingSalesman','Connection','ScratchPad');
 if loadDistanceData('ScratchPad','TravelingSalesman') == false
 error('Failed to load distance data. Cannot continue.');
 end

 lk = mps.sync.mutex('DistanceData','Connection','ScratchPad');
 if acquire(lk,10)
 g = c.Distances;
 newDestinations = setdiff(g.Nodes.Name, destinations);
 if ~isempty(newDestinations)
 error('MPS:Example:TSP:MissingDestinations', ...
 'Add distances for missing destinations: %s', ...
 strjoin(newDestinations,', '));
 end

 src = repmat({name},1,numel(destinations));
 g = addedge(g, src, destinations, distances);
 c.Distances = g;
 release(lk);
 count = numnodes(g);
 end
end

4 Write a MATLAB app to call route-finding functions

Write a MATLAB app that wraps the functions described in Steps 2 and 3 in their respective
proxy functions. The app allows you to specify a host and a port. For testing, invoke the local
version of the route-finding functions when the host is blank and the port has the value 0. For the
deployment workflow, invoke the deployed functions on the server running on the specified host
and port. Use the webwrite function to send HTTP POST requests to the server.

 Manage Application State in Deployed Archives

3-7

For more information on how to write an app, see “Create and Run a Simple App Using App
Designer”.

Write the proxy functions findRouteProxy, addDestinationProxy, and
listDestinationProxy for the findRoute, addDestination, and listDestination
functions, respectively.
function destinations = listDestinationsProxy(app)
 if isempty(app.HostEditField.Value) && ...
 app.PortEditField.Value <= 0
 destinations = listDestinations();
 return;
 end

 listDestinations_OPTIONS = weboptions('MediaType','application/json','Timeout',60,'ContentType','raw');
 listDestinations_HOST = app.HostEditField.Value;
 listDestinations_PORT = app.PortEditField.Value;
 noInputJSON = '{ "rhs": [], "nargout": 1 }';
 destinations_JSON = webwrite(sprintf('http://%s:%d/TravelingSalesman/listDestinations', ...
 listDestinations_HOST,listDestinations_PORT), noInputJSON, listDestinations_OPTIONS);
 if iscolumn(destinations_JSON), destinations_JSON = destinations_JSON'; end
 destinations_RESPONSE = mps.json.decoderesponse(destinations_JSON);
 if isstruct(destinations_RESPONSE)
 error(destinations_RESPONSE.id,destinations_RESPONSE.message);
 else
 if nargout > 0, destinations = destinations_RESPONSE{1}; end
 end
end

function [route,distance] = findRouteProxy(app,start,destinations)
 if isempty(app.HostEditField.Value) && ...
 app.PortEditField.Value <= 0
 [route,distance] = findRoute(start,destinations);
 return;
 end
 findRoute_OPTIONS = weboptions('MediaType','application/json','Timeout',60,'ContentType','raw');
 findRoute_HOST = app.HostEditField.Value;
 findRoute_PORT = app.PortEditField.Value;
 start_destinations_DATA = {};
 if nargin > 0, start_destinations_DATA = [start_destinations_DATA { start }]; end
 if nargin > 1, start_destinations_DATA = [start_destinations_DATA { destinations }]; end
 route_distance_JSON = webwrite(sprintf('http://%s:%d/TravelingSalesman/findRoute', ...
 findRoute_HOST,findRoute_PORT), ...
 mps.json.encoderequest(start_destinations_DATA,'nargout',nargout), findRoute_OPTIONS);
 if iscolumn(route_distance_JSON), route_distance_JSON = route_distance_JSON'; end
 route_distance_RESPONSE = mps.json.decoderesponse(route_distance_JSON);
 if isstruct(route_distance_RESPONSE)
 error(route_distance_RESPONSE.id,route_distance_RESPONSE.message);
 else
 if nargout > 0, route = route_distance_RESPONSE{1}; end
 if nargout > 1, distance = route_distance_RESPONSE{2}; end
 end
end

function count = addDestinationProxy(app, name, destinations,distances)
 if isempty(app.HostEditField.Value) && ...
 app.PortEditField.Value <= 0
 count = addDestination(name, destinations,distances);
 return;
 end

 addDestination_OPTIONS = weboptions('MediaType','application/json','Timeout',60,'ContentType','raw');
 addDestination_HOST = app.HostEditField.Value;
 addDestination_PORT = app.PortEditField.Value;
 name_destinations_distances_DATA = {};
 if nargin > 0, name_destinations_distances_DATA = [name_destinations_distances_DATA { name }]; end
 if nargin > 1, name_destinations_distances_DATA = [name_destinations_distances_DATA { destinations }]; end
 if nargin > 2, name_destinations_distances_DATA = [name_destinations_distances_DATA { distances }]; end
 count_JSON = webwrite(sprintf('http://%s:%d/TravelingSalesman/addDestination', ...
 addDestination_HOST,addDestination_PORT), ...
 mps.json.encoderequest(name_destinations_distances_DATA,'nargout',nargout), addDestination_OPTIONS);

3 Persistence

3-8

 if iscolumn(count_JSON), count_JSON = count_JSON'; end
 count_RESPONSE = mps.json.decoderesponse(count_JSON);
 if isstruct(count_RESPONSE)
 error(count_RESPONSE.id,count_RESPONSE.message);
 else
 if nargout > 0, count = count_RESPONSE{1}; end
 end
end

Step 2: Run Example in Testing Workflow
Test the example code in the MATLAB desktop environment. To do so, copy the all the files located at
to a writable folder on your system, for example, /tmp/persistence_example. Start the MATLAB
desktop and set the current working directory to /tmp/persistence_example using the cd
command.

For testing purposes, control a persistence service from the MATLAB desktop with the
mps.cache.control function. This function returns an mps.cache.Controller object that
manages the life cycle of a local persistence service.

1 Create an mps.cache.Controller object for a local persistence service that uses the Redis
persistence provider.

>> ctrl = mps.cache.control('ScratchPad', 'Redis', 'Port', 8675);

When active, this controller enables a connection named ScratchPad. Connection names link
caches to storage locations in persistence services. The mps.cache.connect function requires
connection names to create data caches. The MATLAB Production Server administrator sets
connection names in the cache configuration file mps_cache_config. For details, see
“Configure Server to Use Redis” (MATLAB Production Server). By using the same connection
names in MATLAB desktop sessions, you enable your code to move from development through
testing to production without change.

2 Start the persistence service using start.

>> start(ctrl);
3 Start the TravelingSalesman route-finding app that uses the persistence service.

>> TravelingSalesman

The app starts with default values for Host and Port.

Click Load Cities to load the list of cities. Use the Start menu to set a starting location and the
>> and << buttons to select and deselect cities to visit. Click Compute Path to display a route
that visits all the cities.

 Manage Application State in Deployed Archives

3-9

4 When you close the app, stop the persistence service using stop. Stopping a persistence service
will delete the data stored by that service.

>> stop(ctrl);

Step 3: Run Example in Deployment Workflow
To run the example in the deployment workflow, copy the all the files located at to a writeable folder
on your system, for example, /tmp/persistence_example. Start the MATLAB desktop and set the
current working directory to /tmp/persistence_example using the MATLAB cd command.

The deployment workflow manages the lifetime of a persistence service outside of a MATLAB desktop
environment and invokes the route-finding functions packaged in an archive deployed to the server.

1 Create a MATLAB Production Server instance

3 Persistence

3-10

Create a server from the system command line using mps-new. For more information, see
“Create Server Instance Using Command Line” (MATLAB Production Server). If you have not
already set up your server environment, see mps-setup for more information.

Create a new server server_1 located in the folder tmp.

mps-new /tmp/server_1

Alternatively, use the MATLAB Production Server dashboard to create a server. For more
information, see “Set Up and Log In to MATLAB Production Server Dashboard” (MATLAB
Production Server).

2 Create a persistence service connection

The deployable archive requires a persistence service connection named ScratchPad. Use the
dashboard to create the ScratchPad connection or copy the file mps_cache_config from the
example directory to the config directory of your server instance. If you already have an
mps_cache_config file in your config directory, edit it to add the ScratchPad connection as
specified in the example mps_cache_config.

3 Create a deployable archive with the Production Server Compiler App and deploy it to the server

1 Open Production Server Compiler app

• MATLAB toolstrip: On the Apps tab, under Application Deployment, click Production
Server Compiler.

• MATLAB command prompt: Enter productionServerCompiler.
2 In the Application Type menu, select Deployable Archive.
3 In the Exported Functions field, add findRoute.m, listDestinations.m and

addDestination.m.
4 Under Archive information, rename the archive to TravelingSalesman.
5 Under Additional files required for your archive to run, add Distances.xlsx.
6 Click Package.
7 The generated deployable archive TravelingSalesman.ctf is located in the

for_redistribution folder of the project. Copy the TravelingSalesman.ctf file to the
auto_deploy folder of the server, /tmp/server_1/auto_deploy in this example, for
hosting.

4 Start the server instance

Start the server from the system command line using mps-start.

mps-start -C /tmp/server_1

Alternatively, use the dashboard to start the server.
5 Start the persistence service

Start the persistence service from the system command line using mps-cache.

mps-cache start -C /tmp/server_1 --connection ScratchPad

Alternatively, use the dashboard to start and attach the persistence service.
6 Test the app

Start the TravelingSalesman route-finding app that uses the persistence service.

>> TravelingSalesman

 Manage Application State in Deployed Archives

3-11

The app starts with empty values for Host and Port. Refer to the server configuration file
main_config located at server_name/config to get the host and port values for your
MATLAB Production Server instance. For this example, find the config file at /tmp/server_1/
config. Enter the host and port values in the app.

Click Load Cities to load the list of cities. Use the Start menu to set a starting location and the
>> and << buttons to select and deselect cities to visit. Click Compute Path to display a route
that visits all the cities.

The results from the testing environment workflow and the deployment environment workflow are the
same.

See Also
mps.cache.Controller | mps.cache.DataCache | mps.sync.TimedMATFileMutex |
mps.sync.TimedRedisMutex | mps.cache.control | mps.cache.connect | mps.sync.mutex

3 Persistence

3-12

More About
• “Data Caching Basics” on page 3-2

 Manage Application State in Deployed Archives

3-13

Handle Custom Routes and Payloads in HTTP Requests
Web request handlers for MATLAB Production Server provide flexible client-server communication.

• Client programmers can send custom HTTP headers and payloads in RESTful requests to the
server.

• Server administrators can provide flexible mapping of the request URLs to deployed MATLAB
functions.

• Server administrators can provide static file serving.
• MATLAB programmers can return custom HTTP headers, HTTP status codes, HTTP status

messages, and payloads in functions deployed to MATLAB Production Server.

To use web request handlers, you write the MATLAB function that you deploy to the server in a
specific way and specify custom URL routes in a JSON file on the server.

Write MATLAB Function for Web Request Handler
To work as a web request handler, the MATLAB function that you deploy to the server must accept
one input argument that is a scalar structure array, and return one output argument that is a scalar
structure array.

The structure in the function input argument provides information about the client request. Clients
can send custom HTTP headers and custom payloads. There are no data format restrictions on the
payload that the deployed function can accept. For example, the function can accept raw data in
binary or ASCII formats, CSV data, or JSON data that is not in the schema specified by the MATLAB
Production Server RESTful API. Clients can also use the Transfer-Encoding: chunked header to
send data in chunks. In chunked transfer encoding, though the server receives payload in chunks, the
input structure receives payload data in entirety.

The structure in the function input argument contains the following fields:

Field Name Data Type Dimensions Description
ApiVersion double 1 x 3 Version of the input

structure schema in the
format <major>
<minor> <fix>

Body uint8 1 x N Request payload
Headers cell N x 2 HTTP request headers

Each element in the cell
array represents a
header. Each element is
a key-value pair, where
the key is of type char
and the value can be of
type char or double.

HttpVersion double 1 x 2 HTTP version in the
format <major>
<minor>

3 Persistence

3-14

Field Name Data Type Dimensions Description
Method char 1 x N HTTP request method
Path char 1 x N Path of request URL

Since the deployed MATLAB function can accept custom headers and payloads in RESTful requests,
you can vary the behavior of the MATLAB function depending on the request header data. You can
use the structure in the function output argument to return a response with custom HTTP headers
and payload. Server processing errors, if any, override any custom HTTP headers that you might set.
If a MATLAB error occurs, the server returns an HTTP 500 Internal Server Error response. All
fields in the structure are optional.

The structure in the output argument can contain the following fields:

Field Name Data Type Dimensions Description
ApiVersion double 1 x 3 Version of the output

structure schema in the
format <major>
<minor> <fix>

Body uint8 1 x N Response payload
Headers cell N x 2 HTTP response headers

Each element in the cell
array represents a
header. Each element is
a key-value pair, where
the key is of type char
and the value can be of
type char or double.

HttpCode double 1 x 1 HTTP status code
HttpMessage char 1 x N HTTP status message

Configure Server for URL Routes
Custom URL routes allow the server to map the path in request URLs to any deployable archive and
MATLAB function deployed on the server.

To specify the mapping of a request URL to a deployed MATLAB function, you use a JSON file present
on the server. The default name of the file is routes.json and its default location is in the
$MPS_INSTALL/config directory. You can change the file name and its location by changing the
value of the --routes-file property in the main_config server configuration file. You must
restart the server after making any updates to routes.json.

When the server starts, it tries to read the routes.json file. If the file does not exist or contains
errors, the server does not start, and writes an error message to the main.log file present in the
directory that the log-root property specifies.

The default routes.json contains a version field with a value of 1.0.0, and an empty pathmap
field. version specifies the schema version of the file. You do not need to change its value. To allow
custom routes, edit the file to specify mapping rules in the pathmap array. In the pathmap array, you
can specify multiple objects, where each object corresponds to a URL route.

 Handle Custom Routes and Payloads in HTTP Requests

3-15

Following is the schema of routes.json.

{
 "version": "1.0.0",
 "pathmap": [
 {
 "match": "<regular_expression>",
 "webhandler": {
 "component": "<name_of_deployable_archive>",
 "function": "<name_of_deployed_function>"
 }
 },
 {
 "match": "<regular_expression>",
 "webhandler": {
 "component": "<name_of_deployable_archive>",
 "function": "<name_of_deployed_function>"
 }
 }
]
}

To specify a URL mapping rule, use the match and webhandler fields from the pathmap array.

• In the match field, specify a regular expression that uses ECMAScript grammar to match the path
in a request URL.

• If the request URL matches multiple regular expressions in the match field, the first match
starting from the beginning of the file is selected.

• The regular expression patterns are considered a match if any substring of the request URL is
a match. For example, the pattern a/b matches a/b, /a/b, and /x/a/b/y. However, you can
use the regular expression anchors, ^ and $, to match positions before or after specific
characters. For example, the pattern ^a/b$ only matches a/b.

• You can specify regular expressions that match query parameters in the request URL.
However, asynchronous request execution using the MATLAB Production Server RESTful API is
not supported. Request execution is synchronous. For more information about the MATLAB
Production Server RESTful API, see “RESTful API for MATLAB Function Execution” (MATLAB
Production Server).

• In the webhandler field, use the component field to specify the name of the deployable archive
and the function field to specify the name of the deployed function for the request URL to
execute.

End-to-End Setup for Web Request Handler
This example assumes you have a server instance running at the default host and port,
localhost:9910. For information on starting a server, see “Start Server Instance Using Command
Line” (MATLAB Production Server).

1 Write a MATLAB function for the web request handler.

The following code shows a MATLAB function that uses an input argument structure request,
whose fields provide information about the request headers and body. The function also
constructs and returns a structure response, whose fields contain a success HTTP code and
status message, custom headers, and a message body.

3 Persistence

3-16

function response = hellowh(request)
 disp(request);
 disp('request.Headers:');
 disp(request.Headers);
 bodyText = char(request.Body);
 disp('request.Body:');
 if length(bodyText) > 100
 disp(bodyText(1:100));
 disp('...');
 else
 disp(bodyText);
 end

 response = struct('ApiVersion', [1 0 0], ...
 'HttpCode', 200, ...
 'HttpMessage', 'OK', ...
 'Headers', {{ ...
 'Server' 'WebFunctionTest/1'; ...
 'X-MyHeader' 'foobar'; ...
 'X-Request-Body-Len' sprintf('%d', length(request.Body)); ...
 'Content-Type' 'text/plain'; ...
 }},...
 'Body', uint8('hello, world'));

 disp(response);
 disp('response.Headers:');
 disp(response.Headers);
end

2 Package the function into a deployable archive.

The following command compiles the hellowh.m function into a deployable archive,
whdemo.ctf. For other ways to create deployable archives, see “Create Deployable Archive for
MATLAB Production Server” (MATLAB Production Server).

mcc -v -U -W 'CTF:whdemo' hellowh.m
3 Deploy the archive, whdemo, to the server. For more information, see “Deploy Archive to MATLAB

Production Server” (MATLAB Production Server).
4 Edit the routes.json file on the server to map a client request to the deployed function.

Restart the server instance for the changes to take effect. See mps-restart (MATLAB Production
Server).

The following file maps any client request that contains MyDemo in the request URL to the
hellowh function in the whdemo archive deployed to the server.

{
 "version": "1.0.0",
 "pathmap": [
 {
 "match": "^/MyDemo/.*",
 "webhandler": {
 "component": "whdemo",
 "function": "hellowh"
 }
 }
]
}

5 Use a client of your choice to invoke the deployed function.

The following command uses cURL to invoke the deployed function from the system command
line.

curl -v http://localhost:9910/MyDemo/this/could/be/any/path?param=YES

 Handle Custom Routes and Payloads in HTTP Requests

3-17

You see the following output at the system command line:

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 9910 (#0)
> GET /MyDemo/this/could/be/any/path?param=YES HTTP/1.1
> Host: localhost:9910
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: WebFunctionTest/1
< X-MyHeader: foobar
< X-Request-Body-Len: 0
< Content-Type: text/plain
< Content-Length: 12
< Connection: Keep-Alive
<
hello, world* Connection #0 to host localhost left intact

See Also
files-root

Related Examples
• “Test Web Request Handlers” on page 4-12
• “Create Deployable Archive for MATLAB Production Server” (MATLAB Production Server)
• “Deploy Archive to MATLAB Production Server” (MATLAB Production Server)

3 Persistence

3-18

MATLAB Production Server Integration
Testing

• “Write a Test Client” on page 4-2
• “Test Client Data Integration Against MATLAB” on page 4-3
• “Test Web Request Handlers” on page 4-12
• “MATLAB Not Responding to Web Requests Made to Test Server” on page 4-17

4

Write a Test Client

Integration testing with the MATLAB embedded server instance requires a client that calls the
compiled MATLAB functions. The client can be coded using any of the MATLAB Production Server
client APIs.

At a minimum, the client must:

1 Instantiate the client runtime.
2 Connect to the embedded server instance using the port specified in the Production Server

Compiler app.
3 Call the functions being tested with appropriate data.

For information on writing client code, see:

• “Create MATLAB Production Server Java Client Using MWHttpClient Class” (MATLAB Production
Server)

• “Create a C# Client” (MATLAB Production Server)
• “Create a Python Client” (MATLAB Production Server)
• “Create a C++ Client” (MATLAB Production Server)

4 MATLAB Production Server Integration Testing

4-2

Test Client Data Integration Against MATLAB
In this section...
“Create a MATLAB Function” on page 4-3
“Prepare for Testing” on page 4-3
“Test Using RESTful API” on page 4-6
“Testing Using Java Client Application” on page 4-10

This example shows how to test your RESTful API or Java client for deployment to MATLAB
Production Server using the development version of MATLAB Production Server. MATLAB Compiler
SDK includes the development version of MATLAB Production Server for testing and debugging
application code and Excel add-ins before deploying them to web applications and enterprise
systems.

For testing purposes, you will create and use a MATLAB function called addmatrix that accepts two
numeric matrices as inputs and returns their sum as an output. You access the local test server by
clicking the Test Client button in the Production Server Compiler app.

Create a MATLAB Function
1 Write a MATLAB function called addmatrix that accepts two numeric matrices as inputs and

returns their sum as an output. Save this file as addmatrix.m.

function a = addmatrix(a1, a2)
a = a1 + a2;

2 Test the function at the MATLAB command prompt.

a = [10 20 30; 40 50 60];
b = [100 200 300; 400 500 600];
c = addmatrix(a,b)

c =

 110 220 330
 440 550 660

Prepare for Testing
1 Open the Production Server Compiler app by typing the following at the MATLAB command

prompt:

productionServerCompiler

 Test Client Data Integration Against MATLAB

4-3

2 In the Type section of the toolstrip, select Deployable Archive (.ctf) from the list.
3 Specify the MATLAB functions to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b Using the file explorer, locate and select the addmatrix.m file.

4 In the section titled Include MATLAB function signature file, click the Create File button.
This will create an editable JSON file that contains the function signatures of the functions
included in the archive. By editing this file you can specify argument types and/or sizes of inputs
and outputs, and also provide help information for each of the inputs. For more information, see
“MATLAB Function Signatures in JSON” (MATLAB Production Server).

If you have an existing JSON file with function signatures, click the Add Existing File button to
add that file instead of the Create File button.

By including this information in your archive, you can use the discovery service functionality on
the server.

Note Only the MATLAB Production Server RESTful API supports the discovery service. For more
information, see “RESTful API for MATLAB Function Execution” (MATLAB Production Server).

4 MATLAB Production Server Integration Testing

4-4

5 Click the Test Client button. The app will switch to the TEST tab.

a Check the value of the Port field.

It must be:

• an available port
• the same port number the client is using

For this example, the client will use port 9910.

 Test Client Data Integration Against MATLAB

4-5

b Check the box to Enable CORS. This option needs to be enabled if you are using a client
that uses JavaScript®. By enabling CORS the server will accept requests from different
domains.

c Check the box to Enable Discovery. This option needs to be enabled to use the discovery
service. The discovery service returns information about deployed MATLAB functions as a
JSON object.

6 Click Start.

Test Using RESTful API
This example uses the MATLAB “Use HTTP with MATLAB” to invoke the RESTful API and make
requests to the testing interface. You can use other tools such cURL or JavaScript XHR.

The testing interface does not support asynchronous client requests. The interface processes a POST
Asynchronous Request (MATLAB Production Server) like a POST Synchronous Request (MATLAB
Production Server). Other asynchronous requests from the RESTful API are not supported.

Test Discovery Service

1 Import the MATLAB HTTP Interface packages, setup the request, and send the request to the
testing interface.

% Import MATLAB HTTP Interface packages
import matlab.net.*
import matlab.net.http.*
import matlab.net.http.fields.*

% Setup request
requestUri = URI('http://localhost:9910/api/discovery');
options = matlab.net.http.HTTPOptions('ConnectTimeout',20,...
 'ConvertResponse',false);
request = RequestMessage;
request.Header = HeaderField('Content-Type','application/json');
request.Method = 'GET';

% Send request
response = request.send(requestUri, options);

2 View the response body.

response.Body.Data

ans =

 "{"discoverySchemaVersion":"1.0.0","archives":{"matfun":{"archiveSchemaVersion":"1.1.0",...

The response body has been snipped to fit the page. A formatted version of the response body
can be found by expanding ans.

ans

{
 "discoverySchemaVersion": "1.0.0",
 "archives": {
 "matfun": {
 "archiveSchemaVersion": "1.1.0",
 "archiveUuid": "",

4 MATLAB Production Server Integration Testing

4-6

 "functions": {
 "addmatrix": {
 "signatures": [
 {
 "help": "",
 "inputs": [
 {
 "help": "input matrix 1",
 "mwsize": [],
 "mwtype": "double",
 "name": "a1"
 },
 {
 "help": "input matrix 2",
 "mwsize": [],
 "mwtype": "double",
 "name": "a2"
 }
],
 "outputs": [
 {
 "help": "output matrix",
 "mwsize": [],
 "mwtype": "double",
 "name": "a"
 }
]
 }
]
 }
 },
 "matlabRuntimeVersion": "9.6.0"
 }
 }
}

To test using JavaScript XHR you can use the following code:

JavaScript XHR Code for Testing Discovery Service
var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
 if (this.readyState === 4) {
 console.log(this.responseText);
 }
});
xhr.open("GET", "http://localhost:9910/api/discovery");
xhr.send(data);

Testing Data Exchange

1 Start a separate session of the MATLAB desktop.

Note You must use a separate MATLAB session to make POST requests. If you make POST
requests from the same MATLAB session that is running the testing interface, MATLAB does not
respond.

 Test Client Data Integration Against MATLAB

4-7

2 Import the MATLAB HTTP Interface packages, setup the request, and send the request to the
testing interface.

% Import HTTP interface packages
import matlab.net.*
import matlab.net.http.*
import matlab.net.http.fields.*

% Setup message body
body = MessageBody;
a = [10 20 30; 40 50 60];
b = [100 200 300;400 500 600];
payload = mps.json.encoderequest({a,b});
body.Payload = payload;

% Setup request
requestUri = URI('http://localhost:9910/matfun/addmatrix');
options = matlab.net.http.HTTPOptions('ConnectTimeout',20,...
 'ConvertResponse',false);
request = RequestMessage;
request.Header = HeaderField('Content-Type','application/json');
request.Method = 'POST';
request.Body = body;

% Send request
response = request.send(requestUri, options)

3 View the response body.

response.Body.Data

ans =

 "{"lhs":[[[110,220,330],[440,550,660]]]}"

To test using JavaScript XHR you can use the following code:

JavaScript XHR Code for Testing Data Exchange

var data = JSON.stringify({
 "rhs": [[[10,20,30],[40,50,60]],[[100,200,300],[400,500,600]]],
 "nargout": 1,
 "outputFormat": {
 "mode": "small",
 "nanType": "string"
 }
});
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
 if (this.readyState === 4) {
 console.log(this.responseText);
 }
});
xhr.open("POST", "http://localhost:9910/matfun/addmatrix");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.send(data);

4 MATLAB Production Server Integration Testing

4-8

Examine Data

1 Switch to the Production Server Compiler app.

2 In the testing interface, under MATLAB Execution Requests, click the completed message in
the app to see the values exchanged between the client and MATLAB.

3 Click Input to view the arrays passed into MATLAB.
4 Click Output to view the array returned to the client.

Set Breakpoints

1 In the testing interface of the Production Server Compiler, click Breakpoints > Break on
MATLAB function entry.

2 In the separate MATLAB session, resend a POST request to the local test server.
3 When the MATLAB editor opens, note that a breakpoint is set at the first line in the function and

that processing has paused at the breakpoint.

You now can use all of the MATLAB debugging tools to step through your function.

 Test Client Data Integration Against MATLAB

4-9

Note You can create a timeout error in the client if you take a long time stepping through the
MATLAB function.

4 Note that variables a1 and a2 are displayed in the MATLAB workspace.
5 In the MATLAB editor, click Continue to complete the debug process.

The Server Requests section of the app shows that the request completed successfully.
6 Click Stop to shutdown the local test server.
7 Click Close Test.

Testing Using Java Client Application
1 Create a Java file MPSClientExample.java with following client code:

MPSClientExample.java
import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix
 {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

public class MPSClientExample {

 public static void main(String[] args){

 double[][] a1={{1,2,3},{3,2,1}};
 double[][] a2={{4,5,6},{6,5,4}};

 MWClient client = new MWHttpClient();

 try{
 MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);
 double[][] result = m.addmatrix(a1,a2);

 // Print the magic square

 printResult(result);

 }catch(MATLABException ex){

 // This exception represents errors in MATLAB
 System.out.println(ex);
 }catch(IOException ex){

 // This exception represents network issues.
 System.out.println(ex);
 }finally{

 client.close();
 }
 }

 private static void printResult(double[][] result){
 for(double[] row : result){
 for(double element : row){
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

2 At the system command prompt, compile the Java client code using the javac command.
javac -classpath "matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample.java

3 At the system command prompt, run the Java client.

4 MATLAB Production Server Integration Testing

4-10

java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample

Note You cannot run the Java client from the MATLAB command prompt.

The application returns the following at the console:

 110.0 220.0 330.0
 440.0 550.0 660.0

You can debug the data exchanged between the client and MATLAB using the same steps listed
under “Test Using RESTful API” on page 4-6.

See Also

Related Examples
• “Write a Test Client” on page 4-2
• “Package Deployable Archives with Production Server Compiler App”
• “Test Web Request Handlers” on page 4-12
• “MATLAB Not Responding to Web Requests Made to Test Server” on page 4-17

 Test Client Data Integration Against MATLAB

4-11

Test Web Request Handlers
You can use the testing interface in the Production Server Compiler app to test web request
handlers for deployment to MATLAB Production Server. A web request handler consists of MATLAB
functions and a JSON file that specifies URL routes. To set up the testing interface for web request
handlers, you configure access to the routes JSON file.

For configuring access to the routes file, either set an environment variable that specifies the path to
the routes file or place the routes file in the MATLAB preferences directory. When you start the
testing interface, it searches for the environment variable for the routes file first. If the environment
variable is not set, then the testing interface searches the MATLAB preferences directory for the
routes file. After you configure access to the routes file, you can test the MATLAB functions for web
request handlers. For more information about web request handlers, see “Handle Custom Routes and
Payloads in HTTP Requests” (MATLAB Production Server).

Set Environment Variable for Routes File
Set the environment variable PRODSERVER_ROUTES_FILE to a value that contains the path to the
routes file. You can set the environment variable at the MATLAB prompt using setenv or at the
system command prompt using syntax specific to your operating system.

setenv('PRODSERVER_ROUTES_FILE', 'path/to/routes/file/routes.json');

• If you specify a relative path to the routes file, from the MATLAB prompt, navigate to the folder
that contains the routes file before you start the test server in the Production Server Compiler
app.

• If you update the contents or location of a routes file that is already in use, for your changes to
take effect, restart the test server in the Production Server Compiler app.

• To turn off testing for web request handlers, set PRODSERVER_ROUTES_FILE to an empty value.

Use MATLAB Preferences Folder for Routes File
An alternate option for configuring access to the routes file is to copy the file to the MATLAB
preferences folder. This configuration persists across MATLAB restarts. You must name the routes file
prodserver_routes.json. To locate your preferences folder, type prefdir at the MATLAB
prompt.

• If you update the contents or location of a routes file that is already in use, for your changes to
take effect, restart the test server in the Production Server Compiler app.

• To turn off testing for web request handlers, rename or move prodserver_routes.json from
the preferences folder.

End-to-End Setup to Test Web Request Handlers
Create Routes File

Using a text editor, create a routes JSON file to map client requests to the MATLAB web request
handler functions. Save the file as routes.json.

The following routes file maps any client request that contains MyDemo in the request URL to a
hellowh MATLAB function in the whdemo deployable archive.

4 MATLAB Production Server Integration Testing

4-12

{
 "version": "1.0.0",
 "pathmap": [
 {
 "match": "^/MyDemo/.*",
 "webhandler": {
 "component": "whdemo",
 "function": "hellowh"
 }
 }
]
}

Configure Access to Routes File

From the MATLAB prompt, set the environment variable PRODSERVER_ROUTES_FILE to specify the
path to the routes file.

setenv('PRODSERVER_ROUTES_FILE', 'J:\routes.json');

Write MATLAB Function for Web Request Handler

To work as a web request handler, a MATLAB function must accept one input argument that is a
scalar structure array, and return one output argument that is a scalar structure array.

The following code shows a MATLAB function, hellowh.m, that uses the input argument structure
request, whose fields provide information about the request headers and body. The function also
constructs and returns the structure response, whose fields contain a success HTTP code and status
message, custom headers, and a message body.
function response = hellowh(request)
 disp(request);
 disp('request.Headers:');
 disp(request.Headers);
 bodyText = char(request.Body);
 disp('request.Body:');
 if length(bodyText) > 100
 disp(bodyText(1:100));
 disp('...');
 else
 disp(bodyText);
 end

 response = struct('ApiVersion', [1 0 0], ...
 'HttpCode', 200, ...
 'HttpMessage', 'OK', ...
 'Headers', {{ ...
 'Server' 'WebFunctionTest/1'; ...
 'X-MyHeader' 'foobar'; ...
 'X-Request-Body-Len' sprintf('%d', length(request.Body)); ...
 'Content-Type' 'text/plain'; ...
 }},...
 'Body', uint8('hello, world'));

 disp(response);
 disp('response.Headers:');
 disp(response.Headers);
end

Prepare for Testing

1 Open the Production Server Compiler app by typing the following at the MATLAB command
prompt:

 Test Web Request Handlers

4-13

productionServerCompiler
2 In the Type section of the toolstrip, select Deployable Archive (.ctf).
3 Specify the MATLAB functions to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b Using the file explorer, locate and select the hellowh.m file.

4 Click Test Client. The app switches to the TEST tab.
5 Click Start to start your test. The Server Log section displays errors, if any.

Call Web Handler MATLAB Function

Use a client of your choice to invoke the deployed function.

The following command uses cURL to invoke the deployed function from the system command line.

curl -v http://localhost:9910/MyDemo/this/could/be/any/path?param=YES

You see the following output at the system command line:

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 9910 (#0)
> GET /MyDemo/this/could/be/any/path?param=YES HTTP/1.1
> Host: localhost:9910
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: WebFunctionTest/1
< X-MyHeader: foobar
< X-Request-Body-Len: 0
< Content-Type: text/plain
< Content-Length: 12
< Connection: Keep-Alive
<
hello, world* Connection #0 to host localhost left intact

Examine Data

1 Switch back to the Production Server Compiler app.
2 In the testing interface, under MATLAB Execution Requests, click the completed message in

the app to see the values exchanged between the client and MATLAB.

4 MATLAB Production Server Integration Testing

4-14

3 Click Input to view data passed into MATLAB.
4 Click Output to view data returned to the client.

After you are satisfied with your testing, you can package the MATLAB function and deploy it to the
server. For more information, see “Create Deployable Archive for MATLAB Production Server” on
page 1-2.

 Test Web Request Handlers

4-15

See Also

Related Examples
• “Handle Custom Routes and Payloads in HTTP Requests” (MATLAB Production Server)
• “Test Client Data Integration Against MATLAB” on page 4-3

4 MATLAB Production Server Integration Testing

4-16

MATLAB Not Responding to Web Requests Made to Test Server

Issue
When testing the integration of client code with MATLAB functions using the Production Server
Compiler app, if your client code makes web requests from the same MATLAB session as the local
test server, MATLAB stops responding. This issue can occur, for example, when making RESTful API
calls using functions such as webread and webwrite or when using the MATLAB HTTP Interface.

Possible Solutions
Open a separate session of MATLAB and make your client web requests to the local test server from
the new session.

See Also

Related Examples
• “Test Client Data Integration Against MATLAB” on page 4-3
• “What Is the HTTP Interface?”

 MATLAB Not Responding to Web Requests Made to Test Server

4-17

MATLAB Production Server Excel Add-In

5

Data Marshaling Rules

In this section...
“Default Marshaling Rules” on page 5-2
“Change Rules for Marshaling Data into MATLAB” on page 5-2
“Change Rules for Marshaling Data into Excel” on page 5-2

Default Marshaling Rules
These types of data do not have natural mappings between MATLAB and Excel:

• Dates: Excel has a special data type for dates, and MATLAB does not.
• Blank cells: MATLAB has no equivalent construct for a blank cell in an Excel spread sheet.

If you do not change the marshaling rules when compiling the add-in, the rules for marshaling Excel
data into MATLAB are:

• Excel dates are marshaled into MATLAB doubles.
• Empty cells are marshaled into zeros.

If you do not change the marshaling rules when compiling the add-in, the rules for marshaling
MATLAB data into Excel are:

• MATLAB NaNs are marshaled into Visual Basic® #QNANs.
• MATLAB does not return any Excel dates.

Change Rules for Marshaling Data into MATLAB
You can change how dates and empty cells are marshaled into MATLAB when compiling the add-in:

• Excel dates can be marshaled as MATLAB character arrays.
• Empty cells can be marshaled as MATLAB NaNs.

To change the marshaling rules:

1 In the class mapper portion of the MATLAB Compiler project window, select the signature of
the function you want to modify.

2 Select Data Conversion Properties from the context menu.
3 Select the input argument rules to change.
4 Click outside of the dialog box to close it.

Change Rules for Marshaling Data into Excel
You can change how dates and NaNs are marshaled into Excel when compiling the add-in:

• MATLAB NaNs can be converted into zeros.
• MATLAB numeric values can be converted into Excel dates.

5 MATLAB Production Server Excel Add-In

5-2

Note To see a date in the expected format, ensure that the Excel cell is formatted to display its
contents in a date format.

To change the marshaling rules:

1 In the class mapper portion of the MATLAB Compiler project window, select the signature of
the function you want to modify.

2 Select Data Conversion Properties from the context menu.
3 Select the output argument rules to change.
4 Click outside of the dialog box to close it.

 Data Marshaling Rules

5-3

MATLAB Production Server Excel Add-In

6

XLA File Not Generated
The compiler may not generate the projName.xla file for various reasons, including that Excel is
not configured to trust access to the VBA project object model. When this happens, you can install the
add-in by importing the projName.bas file into the workbook’s Visual Basic project.

6 MATLAB Production Server Excel Add-In

6-2

Server Configuration Add-in Not Enabled
If your trust settings in Excel are configured to either disable all add-ins or to require add-ins to be
published by a trusted publisher, it is possible that the Configure MATLAB Production Server add-
in is not available after installation. In most cases, the add-in is installed but disabled.

To check if the add-in is installed in Excel:

1 Select File>Options.
2 Select Add-Ins.
3 Look for ServerConfig.Connect in the list of disabled add-ins.

You can enable the add-in by adjusting the trust settings in Excel.

 Server Configuration Add-in Not Enabled

6-3

Error Using a Variable Number of Outputs
If your add-in throws the error:

Error in myfunc: Object reference not set to an instance of an object

The likely cause is that the MATLAB function used by the add-in returns a variable number of
outputs.

Add-ins using code run on a MATLAB Production Server instance do not support MATLAB functions
that return a variable number of outputs. You can either rewrite your MATLAB function to return a
fixed number of outputs, or you can create an add-in that runs locally to your Excel installation.

6 MATLAB Production Server Excel Add-In

6-4

Functions

7

compiler.build.excelClientForProductionServer
Create Microsoft Excel add-in for MATLAB Production Server

Syntax
compiler.build.excelClientForProductionServer(Results)
compiler.build.excelClientForProductionServer(FunctionFiles,ServerArchive)
compiler.build.excelClientForProductionServer(FunctionFiles,ServerArchive,
Name,Value)
compiler.build.excelClientForProductionServer(opts)
results = compiler.build.excelClientForProductionServer(___)

Description

Caution This function is only supported on Windows operating systems.

compiler.build.excelClientForProductionServer(Results) creates an Excel add-in for
MATLAB Production Server using the compiler.build.Results object Results created from the
compiler.build.productionServerArchive function. Before creating Excel add-ins, install a
supported compiler.

compiler.build.excelClientForProductionServer(FunctionFiles,ServerArchive)
creates an Excel add-in using MATLAB functions specified by FunctionFiles and the MATLAB
Production Server archive specified by ServerArchive.

compiler.build.excelClientForProductionServer(FunctionFiles,ServerArchive,
Name,Value) creates an Excel add-in with options specified using one or more name-value
arguments. Options include the add-in name, output directory, and how to handle the Excel date data
type.

compiler.build.excelClientForProductionServer(opts) creates an Excel add-in with
options specified using a compiler.build.ExcelClientForProductionServerOptions object
opts. You cannot specify any other options using name-value arguments.

results = compiler.build.excelClientForProductionServer(___) returns build
information as a compiler.build.Results object using any of the input argument combinations in
previous syntaxes. The build information consists of the build type, paths to the compiled files, and
build options.

Examples

Create Excel Add-In Using Results

Create an Excel add-in for MATLAB Production Server on a Windows system using the results from
the compiler.build.productionServerArchive function.

Ensure that you have the following installed:

7 Functions

7-2

https://www.mathworks.com/support/requirements/supported-compilers.html

• The Windows 10 SDK kit. For details, see Windows 10 SDK.
• MinGW-w64. To install it from the MathWorks File Exchange, see MATLAB Support for MinGW-

w64 C/C++ Compiler.

Use mbuild -setup -client mbuild_com to ensure that MATLAB is able to create Excel add-
ins.

In MATLAB, locate the MATLAB function that you want to deploy as an Excel add-in. For this
example, use the file magicsquare.m located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a MATLAB Production Server archive using the
compiler.build.productionServerArchive command. Save the output as a
compiler.build.Results object serverBuildResults.
serverBuildResults = compiler.build.productionServerArchive(appFile);

Build an Excel add-in for MATLAB Production Server archive using the
compiler.build.excelClientForProductionServer command.
excelBuildResults = compiler.build.excelClientForProductionServer(serverBuildResults);

The function generates the following files within a folder named
magicsquareexcelClientForProductionServer in your current working directory:

• includedSupportPackages.txt
• magicsquare.bas (Only if you enable the 'GenerateVisualBasicFile' option)
• magicsquare.dll
• magicsquare.reg
• magicsquare.xla (Only if you enable the 'GenerateVisualBasicFile' option)
• magicsquareClass.cs
• readme.txt
• requiredMCRProducts.txt

Create Excel Add-In Using Files

Create an Excel add-in for MATLAB Production Server on a Windows system using MATLAB function
files and a MATLAB Production Server archive.

Create a MATLAB Production Server archive using a MATLAB function file. For this example, use the
file magicsquare.m located in matlabroot\extern\examples\compiler as an input to the
compiler.build.productionServerArchive function.
mpsFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
compiler.build.productionServerArchive(mpsFile);

The function generates the file magicsquare.ctf in the
magicsquareproductionServerArchive folder.

Build an Excel add-in for MATLAB Production Server archive using the
compiler.build.excelClientForProductionServer command. Specify the function file and
the CTF file as inputs.

 compiler.build.excelClientForProductionServer

7-3

https://developer.microsoft.com/windows/downloads/windows-10-sdk/
https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c-compiler
https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c-compiler

excelBuildResults = compiler.build.excelClientForProductionServer(mpsFile,'magicsquareproductionServerArchive\magicsquare.ctf');

Customize Excel Add-In

Create an Excel add-in and customize it using name-value arguments.

Create a MATLAB Production Server archive using a MATLAB function file. For this example, use the
file magicsquare.m located in matlabroot\extern\examples\compiler as an input to the
compiler.build.productionServerArchive function.
mpsFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
compiler.build.productionServerArchive(mpsFile);

Build an Excel add-in for MATLAB Production Server using the
compiler.build.excelClientForProductionServer command. Use name-value arguments to
specify the add-in name, generate a Microsoft Visual Basic file, and enable verbose output.
compiler.build.excelClientForProductionServer(mpsFile,...
 'magicsquareproductionServerArchive\magicsquare.ctf',...
 'AddInName','MyMagicSquare',...
 'GenerateVisualBasicFile','on',...
 'Verbose','on');

The function generates the following files within a folder named
MyMagicSquareexcelClientForProductionServer in your current working directory:

• includedSupportPackages.txt
• MyMagicSquare.bas
• MyMagicSquare.dll
• MyMagicSquare.reg
• MyMagicSquare.xla
• MyMagicSquareClass.cs
• readme.txt
• requiredMCRProducts.txt

Create Multiple Add-Ins Using Options Object

Create multiple Excel add-ins for MATLAB Production Server on a Windows system using a
compiler.build.ExcelClientForProductionServerOptions object.

Create a MATLAB Production Server archive using a MATLAB function file. For this example, use the
file magicsquare.m located in matlabroot\extern\examples\compiler as an input to the
compiler.build.productionServerArchive function.
mpsFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
compiler.build.productionServerArchive(mpsFile);

Create an ExcelClientForProductionServerOptions object using the file houdini.m located
in matlabroot\extern\examples\compiler. Use name-value arguments to specify a common
output directory, generate a Visual Basic file, and enable verbose output.
appFile = fullfile(matlabroot,'extern','examples','compiler','houdini.m');
opts = compiler.build.ExcelClientForProductionServerOptions(appFile,...
 'magicsquareproductionServerArchive\magicsquare.ctf',...
 'OutputDir','D:\Documents\MATLAB\work\MPSExcelAddInBatch',...

7 Functions

7-4

 'GenerateVisualBasicFile','on',...
 'Verbose','on')

opts =

 ExcelClientForProductionServerOptions with properties:

 AddInName: 'houdini'
 AddInVersion: '1.0.0.0'
 ClassName: 'houdiniClass'
 DebugBuild: off
 FunctionFiles: {'C:\Program Files\MATLAB\R2023a\extern\examples\compiler\houdini.m'}
 GenerateVisualBasicFile: on
 ServerArchive: 'magicsquareproductionServerArchive\magicsquare.ctf'
 ReplaceExcelBlankWithNaN: off
 ConvertExcelDateToString: off
 ReplaceNaNToZeroInExcel: off
 ConvertNumericOutToDateInExcel: off
 Verbose: on
 OutputDir: 'D:\Documents\MATLAB\work\MPSExcelAddInBatch'

Build the add-in using the ExcelAddInOptions object.
compiler.build.excelClientForProductionServer(opts);

To create a new add-in using the function file houdini.m with the same options, use dot notation to
modify the FunctionFiles argument of the existing ExcelAddInOptions object before running
the build function again.
appFile2 = fullfile(matlabroot,'extern','examples','compiler','houdini.m');
opts.FunctionFiles = appFile2;
compiler.build.excelClientForProductionServer(opts);

By modifying the FunctionFiles argument and recompiling, you can create multiple add-ins using
the same options object.

Get Build Information from Excel Add-In for MATLAB Production Server

Create an Excel add-in for MATLAB Production Server and save information about the build type,
generated files, included support packages, and build options to a compiler.build.Results
object.

Build a MATLAB Production Server archive using the file magicsquare.m. Save the output as a
compiler.build.Results object serverBuildResults.
serverBuildResults = compiler.build.productionServerArchive('magicsquare.m');

Build the Excel add-in using the serverBuildResults object.
results = compiler.build.excelClientForProductionServer(serverBuildResults)

results =

 Results with properties:

 BuildType: 'excelClientForProductionServer'
 Files: {1×1 cell}
IncludedSupportPackages: {}
 Options: [1×1 compiler.build.ExcelClientForProductionServerOptions]

 compiler.build.excelClientForProductionServer

7-5

The Files property contains the paths to the following compiled files:

• magicsquare.dll
• magicsquare.bas
• magicsquare.xla

Note The files magicsquare.bas and magicsquare.xla are included in Files only if you enable
the 'GenerateVisualBasicFile' option in the
compiler.build.excelClientForProductionServer command.

Input Arguments
FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]
Data Types: char | string | cell

opts — Excel add-in build options
compiler.build.ExcelClientForProductionServerOptions object

Excel add-in build options, specified as a
compiler.build.ExcelClientForProductionServerOptions object.

Results — Build results object
Results object

Build results, specified as a compiler.build.Results object. Create the Results object by saving
the output from the compiler.build.productionServerArchive function.

ServerArchive — Excel add-in build options
character vector | string scalar

MATLAB Production Server archive deployed on the Production Server, specified as a character
vector or a string scalar.
Example: 'mpsArchive.ctf'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Verbose','on'

7 Functions

7-6

AddInName — Name of Excel add-in
character vector | string scalar

Name of the Excel add-in, specified as a character vector or string scalar. The default name of the
generated add-in is the first entry of the FunctionFiles argument. The name must begin with a
letter and contain only alphabetic characters and underscores.
Example: 'AddInName','myAddIn'
Data Types: char | string

AddInVersion — Add-in version
'1.0.0.0' (default) | character vector | string scalar

Add-in version, specified as a character vector or a string scalar.
Example: 'AddInVersion','4.0'
Data Types: char | string

ClassName — Name of class
character vector | string scalar

Name of the generated class, specified as a character vector or a string scalar. You cannot specify this
option if you use a ClassMap input. Class names must meet the Excel class name requirements.

The default value is the AddInName argument appended with Class.
Example: 'ClassName','MagicSquareClass'
Data Types: char | string

ConvertExcelDateToString — Flag to convert date to string
'off' (default) | on/off logical value

Flag to convert Excel date to string, specified as 'on' or 'off', or as numeric or logical 1 (true) or
0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the compiler converts the Excel date datatype to MATLAB
string.

• If you set this property to 'off', then dates are not converted.

Example: 'ConvertExcelDateToString','On'
Data Types: logical

ConvertNumericOutToDateInExcel — Flag to convert numeric data to Excel date
'off' (default) | on/off logical value

Flag to convert numeric data to Excel date, specified as 'on' or 'off', or as numeric or logical 1
(true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus,
you can use the value of this property as a logical value. The value is stored as an on/off logical value
of type matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the compiler converts numeric data to the Excel date
datatype.

 compiler.build.excelClientForProductionServer

7-7

• If you set this property to 'off', then numeric data is not converted.

Example: 'ConvertNumericOutToDateInExcel','On'
Data Types: logical

DebugBuild — Flag to enable debug symbols
'on' (default) | on/off logical value

Flag to enable debug symbols, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the add-in is compiled with debug symbols.
• If you set this property to 'off', then the add-in is not compiled with debug symbols.

Example: 'DebugSymbols','On'
Data Types: logical

GenerateVisualBasicFile — Flag to generate Visual Basic file
'off' (default) | on/off logical value

Flag to generate a Visual Basic file (.bas) and an Excel add-in file (.xla), specified as 'on' or
'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and
'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The
value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function generates an Excel add-in XLA file and a Visual
Basic BAS file containing the Microsoft Excel Formula Function interface to the add-in.

• If you set this property to 'off', then the function does not generate a Visual Basic file or an
Excel add-in file.

Example: 'GenerateVisualBasicFile','On'
Data Types: logical

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the add-in name appended with excelAddIn.
Example: 'OutputDir','D:\Documents\MATLAB\work\mymagicexcelAddIn'
Data Types: char | string

ReplaceExcelBlankWithNaN — Flag to convert blank Excel cells to NaN
'off' (default) | on/off logical value

Flag to convert blank Excel cells to NaN, specified as 'on' or 'off', or as numeric or logical 1
(true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus,
you can use the value of this property as a logical value. The value is stored as an on/off logical value
of type matlab.lang.OnOffSwitchState.

7 Functions

7-8

• If you set this property to 'on', then the compiler converts blank Excel cells to NaN in the
compiled artifact.

• If you set this property to 'off', then blank Excel cells are not converted.

Example: 'ReplaceExcelBlankWithNaN','On'
Data Types: logical

ReplaceNaNToZeroInExcel — Flag to convert NaN entries to zero
'off' (default) | on/off logical value

Flag to convert NaN entries to zero, specified as 'on' or 'off', or as numeric or logical 1 (true) or
0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the compiler converts NaN entries from the compiled
artifact to zero in Excel.

• If you set this property to 'off', then NaN entries are not converted.

Example: 'ReplaceNaNToZeroInExcel','On'
Data Types: logical

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','On'
Data Types: logical

Output Arguments
results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object contains:

• Build type, which is 'excelClientForProductionServer'
• Paths to the following files:

• AddInName.dll
• AddInName.bas (if you enable the 'GenerateVisualBasicFile' option)

 compiler.build.excelClientForProductionServer

7-9

• AddInName.xla (if you enable the 'GenerateVisualBasicFile' option)
• A list of included support packages
• Build options, specified as an ExcelClientForProductionServerOptions object

Limitations
• This function is only supported on Windows operating systems.

Version History
Introduced in R2021b

See Also
compiler.build.ExcelClientForProductionServerOptions | compiler.build.Results |
Library Compiler | mcc

7 Functions

7-10

compiler.build.ExcelClientForProductionServerOpti
ons
Options for building Excel add-ins

Syntax
opts = compiler.build.ExcelClientForProductionServerOptions(Results)
opts = compiler.build.ExcelClientForProductionServerOptions(FunctionFiles,
ServerArchive)
opts = compiler.build.ExcelClientForProductionServerOptions(FunctionFiles,
ServerArchive,Name,Value)

Description
opts = compiler.build.ExcelClientForProductionServerOptions(Results) creates an
ExcelClientForProductionServerOptions object using the compiler.build.Results object
Results created from the compiler.build.productionServerArchive function. Use the
ExcelClientForProductionServerOptions object as an input to the
compiler.build.excelClientForProductionServer function.

opts = compiler.build.ExcelClientForProductionServerOptions(FunctionFiles,
ServerArchive) creates an ExcelClientForProductionServerOptions object using MATLAB
functions specified by FunctionFiles and the MATLAB Production Server archive specified by
ServerArchive.

opts = compiler.build.ExcelClientForProductionServerOptions(FunctionFiles,
ServerArchive,Name,Value) creates an ExcelClientForProductionServerOptions object
with options specified using one or more name-value arguments. Options include the add-in name,
output directory, and how to handle the Excel date data type.

Examples

Create Excel Add-In Options Object Using Results

Create an ExcelClientForProductionServerOptions object using the results from the
compiler.build.productionServerArchive function.

In MATLAB, locate the MATLAB function that you want to deploy to MATLAB Production Server. For
this example, use the file magicsquare.m located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a MATLAB Production Server archive using the
compiler.build.productionServerArchive function. Save the output as a
compiler.build.Results object serverBuildResults.
serverBuildResults = compiler.build.productionServerArchive(appFile);

Create an ExcelClientForProductionServerOptions object using serverBuildResults and
the compiler.build.excelClientForProductionServer function.

 compiler.build.ExcelClientForProductionServerOptions

7-11

opts = compiler.build.ExcelClientForProductionServerOptions(serverBuildResults)

opts =

 ExcelClientForProductionServerOptions with properties:

 AddInName: 'magicsquare'
 AddInVersion: '1.0.0.0'
 ClassName: 'magicsquareClass'
 DebugBuild: off
 FunctionFiles: {'C:\Program Files\MATLAB\R2023a\extern\
 examples\compiler\magicsquare.m'}
 GenerateVisualBasicFile: on
 ServerArchive: '.\magicsquareproductionServerArchive\magicsquare.ctf'
 ReplaceExcelBlankWithNaN: off
 ConvertExcelDateToString: off
 ReplaceNaNToZeroInExcel: off
 ConvertNumericOutToDateInExcel: off
 Verbose: off
 OutputDir: '.\magicsquareexcelClientForProductionServer'

Use the ExcelClientForProductionServerOptions object as an input to the
compiler.build.excelClientForProductionServer function to build an Excel add-in for
MATLAB Production Server.
buildResults = compiler.build.excelClientForProductionServer(opts);

Create Excel Add-In Options Object Using Files

Create an ExcelClientForProductionServerOptions object using a MATLAB function file and a
MATLAB Production Server archive.

Build a MATLAB Production Server archive using the
compiler.build.productionServerArchive function. For this example, use the file houdini.m
located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','houdini.m');
compiler.build.productionServerArchive(appFile);

Create an ExcelClientForProductionServerOptions object using the MATLAB Production
Server archive file houdini.ctf.

opts = compiler.build.ExcelClientForProductionServerOptions(appFile,...
 'houdiniproductionServerArchive\houdini.ctf')

opts =

 ExcelClientForProductionServerOptions with properties:

 AddInName: 'houdini'
 AddInVersion: '1.0.0.0'
 ClassName: 'houdiniClass'
 DebugBuild: off
 FunctionFiles: {'C:\Program Files\MATLAB\R2023a\extern\examples\compiler\houdini.m'}
 GenerateVisualBasicFile: off
 ServerArchive: 'houdiniproductionServerArchive\houdini.ctf'
 ReplaceExcelBlankWithNaN: off

7 Functions

7-12

 ConvertExcelDateToString: off
 ReplaceNaNToZeroInExcel: off
 ConvertNumericOutToDateInExcel: off
 Verbose: off
 OutputDir: '.\houdiniexcelClientForProductionServer'

Use the ExcelClientForProductionServerOptions object as an input to the
compiler.build.excelClientForProductionServer function to build an Excel add-in for
MATLAB Production Server.
buildResults = compiler.build.excelClientForProductionServer(opts);

Customize Excel Add-In Options Object

Create an ExcelClientForProductionServerOptions object and customize it using name-value
arguments.

Build a MATLAB Production Server archive using the
compiler.build.productionServerArchive function. For this example, use the file houdini.m
located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','houdini.m');
compiler.build.productionServerArchive(appFile);

Create an ExcelClientForProductionServerOptions object using the MATLAB Production
Server archive file houdini.ctf. Use name-value arguments to specify the output directory and
generate a Visual Basic file.

opts = compiler.build.ExcelClientForProductionServerOptions(appFile,...
 'houdiniproductionServerArchive\houdini.ctf',...
 'OutputDir','D:\Documents\MATLAB\work\HoudiniMPSAddIn',...
 'GenerateVisualBasicFile','on')

opts =

 ExcelClientForProductionServerOptions with properties:

 AddInName: 'houdini'
 AddInVersion: '1.0.0.0'
 ClassName: 'houdiniClass'
 DebugBuild: off
 FunctionFiles: {'C:\Program Files\MATLAB\R2023a\extern\examples\compiler\houdini.m'}
 GenerateVisualBasicFile: on
 ServerArchive: 'houdiniproductionServerArchive\houdini.ctf'
 ReplaceExcelBlankWithNaN: off
 ConvertExcelDateToString: off
 ReplaceNaNToZeroInExcel: off
 ConvertNumericOutToDateInExcel: off
 Verbose: off
 OutputDir: 'D:\Documents\MATLAB\work\HoudiniMPSAddIn'

You can modify the property values of an existing ExcelClientForProductionServerOptions
object using dot notation. For example, enable verbose output.
opts.Verbose = 'on'

opts =

 compiler.build.ExcelClientForProductionServerOptions

7-13

 ExcelClientForProductionServerOptions with properties:

 AddInName: 'houdini'
 AddInVersion: '1.0.0.0'
 ClassName: 'houdiniClass'
 DebugBuild: off
 FunctionFiles: {'C:\Program Files\MATLAB\R2023a\extern\examples\compiler\houdini.m'}
 GenerateVisualBasicFile: on
 ServerArchive: 'houdiniproductionServerArchive\houdini.ctf'
 ReplaceExcelBlankWithNaN: off
 ConvertExcelDateToString: off
 ReplaceNaNToZeroInExcel: off
 ConvertNumericOutToDateInExcel: off
 Verbose: on
 OutputDir: 'D:\Documents\MATLAB\work\HoudiniMPSAddIn'

Use the ExcelClientForProductionServerOptions object as an input to the
compiler.build.excelClientForProductionServer function to build an Excel add-in for
MATLAB Production Server.
buildResults = compiler.build.excelClientForProductionServer(opts);

Input Arguments
FunctionFiles — MATLAB function files
character vector | string scalar | cell array of character vectors | string array

List of files implementing MATLAB functions, specified as a character vector, a string scalar, a string
array, or a cell array of character vectors. Files must have a .m extension.
Example: {'myFunction1.m','myFunction2.m'}
Data Types: char | string | cell

Results — Build results object
Results object

Build results, specified as a compiler.build.Results object. Create the Results object by saving
the output from the compiler.build.productionServerArchive function.

ServerArchive — Excel add-in build options
character vector | string scalar

MATLAB Production Server archive deployed on the Production Server, specified as a character
vector or a string scalar.
Example: 'mpsArchive.ctf'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

7 Functions

7-14

Example: 'Verbose','on'

AddInName — Name of Excel add-in
character vector | string scalar

Name of the Excel add-in, specified as a character vector or string scalar. The default name of the
generated add-in is the first entry of the FunctionFiles argument. The name must begin with a
letter and contain only alphabetic characters and underscores.
Example: 'AddInName','myAddIn'
Data Types: char | string

AddInVersion — Add-in version
'1.0.0.0' (default) | character vector | string scalar

Add-in version, specified as a character vector or a string scalar.
Example: 'AddInVersion','4.0'
Data Types: char | string

ClassName — Name of class
character vector | string scalar

Name of the generated class, specified as a character vector or a string scalar. You cannot specify this
option if you use a ClassMap input. Class names must meet the Excel class name requirements.

The default value is the AddInName argument appended with Class.
Example: 'ClassName','MagicSquareClass'
Data Types: char | string

ConvertExcelDateToString — Flag to convert date to string
'off' (default) | on/off logical value

Flag to convert Excel date to string, specified as 'on' or 'off', or as numeric or logical 1 (true) or
0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the compiler converts the Excel date datatype to MATLAB
string.

• If you set this property to 'off', then dates are not converted.

Example: 'ConvertExcelDateToString','On'
Data Types: logical

ConvertNumericOutToDateInExcel — Flag to convert numeric data to Excel date
'off' (default) | on/off logical value

Flag to convert numeric data to Excel date, specified as 'on' or 'off', or as numeric or logical 1
(true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus,
you can use the value of this property as a logical value. The value is stored as an on/off logical value
of type matlab.lang.OnOffSwitchState.

 compiler.build.ExcelClientForProductionServerOptions

7-15

• If you set this property to 'on', then the compiler converts numeric data to the Excel date
datatype.

• If you set this property to 'off', then numeric data is not converted.

Example: 'ConvertNumericOutToDateInExcel','On'
Data Types: logical

DebugBuild — Flag to enable debug symbols
'on' (default) | on/off logical value

Flag to enable debug symbols, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the add-in is compiled with debug symbols.
• If you set this property to 'off', then the add-in is not compiled with debug symbols.

Example: 'DebugSymbols','On'
Data Types: logical

GenerateVisualBasicFile — Flag to generate Visual Basic file
'off' (default) | on/off logical value

Flag to generate a Visual Basic file (.bas) and an Excel add-in file (.xla), specified as 'on' or
'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and
'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The
value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function generates an Excel add-in XLA file and a Visual
Basic BAS file containing the Microsoft Excel Formula Function interface to the add-in.

• If you set this property to 'off', then the function does not generate a Visual Basic file or an
Excel add-in file.

Example: 'GenerateVisualBasicFile','On'
Data Types: logical

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the add-in name appended with excelAddIn.
Example: 'OutputDir','D:\Documents\MATLAB\work\mymagicexcelAddIn'
Data Types: char | string

ReplaceExcelBlankWithNaN — Flag to convert blank Excel cells to NaN
'off' (default) | on/off logical value

Flag to convert blank Excel cells to NaN, specified as 'on' or 'off', or as numeric or logical 1
(true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus,

7 Functions

7-16

you can use the value of this property as a logical value. The value is stored as an on/off logical value
of type matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the compiler converts blank Excel cells to NaN in the
compiled artifact.

• If you set this property to 'off', then blank Excel cells are not converted.

Example: 'ReplaceExcelBlankWithNaN','On'
Data Types: logical

ReplaceNaNToZeroInExcel — Flag to convert NaN entries to zero
'off' (default) | on/off logical value

Flag to convert NaN entries to zero, specified as 'on' or 'off', or as numeric or logical 1 (true) or
0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the compiler converts NaN entries from the compiled
artifact to zero in Excel.

• If you set this property to 'off', then NaN entries are not converted.

Example: 'ReplaceNaNToZeroInExcel','On'
Data Types: logical

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','On'
Data Types: logical

Output Arguments
opts — Excel add-in build options
ExcelClientForProductionServerOptions object

Excel add-in build options, returned as an ExcelClientForProductionServerOptions object.

Version History
Introduced in R2021b

 compiler.build.ExcelClientForProductionServerOptions

7-17

See Also
compiler.build.excelClientForProductionServer | mcc

7 Functions

7-18

compiler.build.productionServerArchive
Create an archive for deployment to MATLAB Production Server or Docker

Syntax
compiler.build.productionServerArchive(FunctionFiles)
compiler.build.productionServerArchive(FunctionFiles,Name,Value)
compiler.build.productionServerArchive(opts)
results = compiler.build.productionServerArchive(___)

Description
compiler.build.productionServerArchive(FunctionFiles) creates a deployable archive
using the MATLAB functions specified by FunctionFiles.

compiler.build.productionServerArchive(FunctionFiles,Name,Value) creates a
deployable archive with additional options specified using one or more name-value arguments.
Options include the archive name, JSON function signatures, and output directory.

compiler.build.productionServerArchive(opts) creates a deployable archive with options
specified using a compiler.build.ProductionServerArchiveOptions object opts. You cannot
specify any other options using name-value arguments.

results = compiler.build.productionServerArchive(___) returns build information as a
compiler.build.Results object using any of the input argument combinations in previous
syntaxes. The build information consists of the build type, the path to the compiled archive, and build
options.

Examples

Create MATLAB Production Server Archive

Create a deployable server archive.

In MATLAB, locate the MATLAB function that you want to deploy as an archive. For this example, use
the file magicsquare.m located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a production server archive using the compiler.build.productionServerArchive
command.
compiler.build.productionServerArchive(appFile);

This syntax generates the following files within a folder named
mymagicproductionServerArchive in your current working directory:

• includedSupportPackages.txt — Text file that lists all support files included in the archive.
• mymagic.ctf — Deployable production server archive file.

 compiler.build.productionServerArchive

7-19

• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were not
included in the application. For information on non-supported functions, see MATLAB Compiler
Limitations.

• readme.txt — Readme file that contains information on deployment prerequisites and the list of
files to package for deployment.

• requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

Customize Production Server Archive

Create a production server archive and customize it using name-value arguments.

For this example, use the files addmatrix.m and subtractmatrix.mat located in matlabroot
\extern\examples\compiler.
addFile = fullfile(matlabroot,'extern','examples','compilersdk','c_cpp','matrix','addmatrix.m');
subFile = fullfile(matlabroot,'extern','examples','compilersdk','c_cpp','matrix','subtractmatrix.m');

Build a production server archive using the compiler.build.productionServerArchive
command. Use name-value arguments to specify the archive name and enable verbose output.
compiler.build.productionServerArchive({addFile,subFile},...
 'ArchiveName','MatrixArchive',...
 'Verbose','on');

This syntax generates the following files within a folder named
MatrixArchiveproductionServerArchive in your current working directory:

• includedSupportPackages.txt — Text file that lists all support files included in the archive.
• MatrixArchive.ctf — Deployable production server archive file.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were not

included in the application. For information on non-supported functions, see MATLAB Compiler
Limitations.

• readme.txt — Readme file that contains information on deployment prerequisites and the list of
files to package for deployment.

• requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

Create Multiple Production Server Archives Using Options Object

Customize multiple production server archives using a
compiler.build.ProductionServerArchiveOptions object.

For this example, use the file hello.m located in matlabroot\extern\examples\compiler.
functionFile = fullfile(matlabroot,'extern','examples','compiler','hello.m');

Create a ProductionServerArchiveOptions object. Use name-value arguments to specify a
common output directory, disable the automatic inclusion of data files, and enable verbose output.
opts = compiler.build.ProductionServerArchiveOptions(functionFile,...
 'OutputDir','D:\Documents\MATLAB\work\ProductionServerBatch',...
 'AutoDetectDataFiles','off',...
 'Verbose','on')

7 Functions

7-20

opts =

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'hello'
 FunctionFiles: {'C:\Program Files\MATLAB\R2023a\extern\examples\compiler\hello.m'}
 FunctionSignatures: ''
 AdditionalFiles: {}
 AutoDetectDataFiles: off
 SupportPackages: {'autodetect'}
 Verbose: on
 OutputDir: 'D:\Documents\MATLAB\work\ProductionServerBatch'

Build the production server archive using the ProductionServerArchiveOptions object.
compiler.build.productionServerArchive(opts);

To compile using the function file houdini.m with the same options, use dot notation to modify the
FunctionFiles of the existing ProductionServerArchiveOptions object before running the
build function again.
opts.FunctionFiles = 'houdini.m';
compiler.build.productionServerArchive(opts);

By modifying the FunctionFiles argument and recompiling, you can compile multiple archives
using the same options object.

Create Microservice Docker Image Using Results

Create a microservice Docker image using the results from building a production server archive on a
Linux system.

Install and configure Docker on your system.

Create a production server archive using magicsquare.m and save the build results to a
compiler.build.Results object.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.productionServerArchive(appFile);

Pass the Results object as an input to the compiler.package.microserviceDockerImage
function to build the Docker image.
compiler.package.microserviceDockerImage(buildResults);

The function generates the following files within a folder named
magicsquaremicroserviceDockerImage in your current working directory:

• applicationFilesForMATLABCompiler/magicsquare.ctf — Deployable archive file.
• Dockerfile — Docker file that specifies Docker run time options.
• GettingStarted.txt — Text file that contains deployment information.

For more details, see “Create Microservice Docker Image” on page 1-12.

 compiler.build.productionServerArchive

7-21

https://www.docker.com/

Get Build Information from Production Server Archive

Create a production server archive and save information about the build type, archive file, included
support packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m.
results = compiler.build.productionServerArchive(magicsquare.m')

results =

 Results with properties:

 BuildType: 'productionServerArchive'
 Files: {'D:\Documents\MATLAB\work\magicsquareproductionServerArchive\magicsquare.ctf'}
 IncludedSupportPackages: {}
 Options: [1×1 compiler.build.ProductionServerArchiveOptions]

The Files property contains the path to the deployable archive file magicsquare.ctf.

Input Arguments
FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]
Data Types: char | string | cell

opts — Production server options object
compiler.build.ProductionServerArchiveOptions object

Production server archive build options, specified as a
compiler.build.ProductionServerArchiveOptions object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Verbose','on'

ArchiveName — Name of deployable archive
character vector | string scalar

Name of the deployable archive, specified as a character vector or a string scalar. The default name
of the generated archive is the first entry of the FunctionFiles argument.
Example: 'ArchiveName','MyMagic'
Data Types: char | string

7 Functions

7-22

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the production server archive.

• If you set this property to 'off', then you must add data files to the archive using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','off'
Data Types: logical

FunctionSignatures — Path to JSON file
character vector | string scalar

Path to a JSON file that details the signatures of all functions listed in FunctionFiles, specified as a
character vector or a string scalar. For information on specifying function signatures, see “MATLAB
Function Signatures in JSON” (MATLAB Production Server).
Example: 'FunctionSignatures','D:\Documents\MATLAB\work\magicapp
\signatures.json'

Data Types: char | string

ObfuscateArchive — Flag to obfuscate deployable archive
'off' (default) | on/off logical value

Flag to obfuscate the deployable archive, specified as 'on' or 'off', or as numeric or logical 1
(true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus,
you can use the value of this property as a logical value. The value is stored as an on/off logical value
of type matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then folder structures and file names in the deployable archive
are obfuscated from the end user, and user code and data contained in MATLAB files are placed
into a user package within the archive. Additionally, all .m files are converted to P-files before
packaging. This option is equivalent to using mcc with -j and -s specified.

• If you set this property to 'off', then the deployable archive is not obfuscated. This is the default
behavior.

Example: 'ObfuscateArchive','on'
Data Types: logical

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the archive name appended with
productionServerArchive.

 compiler.build.productionServerArchive

7-23

Example: 'OutputDir','D:\Documents\MATLAB\work\MyMagicproductionServerArchive'

SupportPackages — Support packages
'autodetect' (default) | 'none' | string scalar | cell array of character vectors | string array

Support packages to include, specified as one of the following options:

• 'autodetect' (default) — The dependency analysis process detects and includes the required
support packages automatically.

• 'none' — No support packages are included. Using this option can cause runtime errors.
• A string scalar, character vector, or cell array of character vectors — Only the specified support

packages are included. To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages

Example: 'SupportPackages',{'Deep Learning Toolbox Converter for TensorFlow
Models','Deep Learning Toolbox Model for Places365-GoogLeNet Network'}

Data Types: char | string | cell

Verbose — Build verbosity
'off' (default) | on/off logical value

Build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','off'
Data Types: logical

Output Arguments
results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object consists of:

• The build type, which is 'productionServerArchive'
• Path to the deployable archive file
• A list of included support packages
• Build options, specified as a ProductionServerArchiveOptions object

Version History
Introduced in R2020b

7 Functions

7-24

See Also
compiler.build.ProductionServerArchiveOptions | compiler.build.Results |
compiler.package.microserviceDockerImage | productionServerCompiler

 compiler.build.productionServerArchive

7-25

compiler.build.ProductionServerArchiveOptions
Options for building deployable archives

Syntax
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles)
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles,
Name,Value)

Description
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles) creates a
ProductionServerArchiveOptions object using the MATLAB functions specified by
FunctionFiles. Use the ProductionServerArchiveOptions object as an input to the
compiler.build.productionServerArchive function.

opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles,
Name,Value) creates a ProductionServerArchiveOptions object with options specified using
one or more name-value arguments. Options include the archive name, output directory, and
additional files to include.

Examples

Create Deployable Archive Options Object

Create a ProductionServerArchiveOptions object from a function file.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
opts = compiler.build.ProductionServerArchiveOptions(appFile)

opts =

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'magicsquare'
 FunctionFiles: {'C:\Program Files\MATLAB\R2023a\extern\examples\compiler\magicsquare.m'}
 FunctionSignatures: ''
 AdditionalFiles: {}s+ AutoDetectDataFiles: ons+ ObfuscateArchive: offs+ SupportPackages: {'autodetect'}
 OutputDir: '.\magicsquareproductionServerArchive'
 Verbose: off

You can modify the property values of an existing ProductionServerArchiveOptions object using
dot notation. For example, enable verbose output.
opts.Verbose = 'on'

opts =

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'magicsquare'
 FunctionFiles: {'C:\Program Files\MATLAB\R2023a\extern\examples\compiler\magicsquare.m'}

7 Functions

7-26

 FunctionSignatures: ''
 AdditionalFiles: {}s+ AutoDetectDataFiles: ons+ ObfuscateArchive: offs+ SupportPackages: {'autodetect'}
 OutputDir: '.\magicsquareproductionServerArchive'
 Verbose: on

Use the DotNETAssemblyOptions object as an input to the
compiler.build.productionServerArchive function to build a production server archive.
compiler.build.productionServerArchive(opts);

Customize Deployable Archive Options Object

Create a production server archive using a ProductionServerArchiveOptions object.

Create a ProductionServerArchiveOptions object using the function files myfunc1.m and
myfunc2.m. Use name-value arguments to specify the output directory, enable verbose output, and
disable automatic detection of data files.
opts = compiler.build.ProductionServerArchiveOptions(["myfunc1.m","myfunc2.m"],...
 'ArchiveName','MyServer',...
 'OutputDir','D:\Documents\MATLAB\work\ProductionServer',...
 'AutoDetectDataFiles','off')

opts =

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'MyServer'
 FunctionFiles: {2×1 cell}
 FunctionSignatures: ''
 AdditionalFiles: {}
 AutoDetectDataFiles: off
 SupportPackages: {'autodetect'}
 OutputDir: 'D:\Documents\MATLAB\work\ProductionServer'
 Verbose: off

You can modify the property values of an existing ProductionServerArchiveOptions object using
dot notation. For example, enable verbose output.
opts.Verbose = 'on'

opts =

 ProductionServerArchiveOptions with properties:

 ArchiveName: 'MyServer'
 FunctionFiles: {2×1 cell}
 FunctionSignatures: ''
 AdditionalFiles: {}
 AutoDetectDataFiles: off
 SupportPackages: {'autodetect'}
 OutputDir: 'D:\Documents\MATLAB\work\ProductionServer\'
 Verbose: on

Use the ProductionServerArchiveOptions object as an input to the function to build a
production server archive.

 compiler.build.ProductionServerArchiveOptions

7-27

buildResults = compiler.build.productionServerArchive(opts);

Input Arguments
FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Verbose','on'

ArchiveName — Name of deployable archive
character vector | string scalar

Name of the deployable archive, specified as a character vector or a string scalar. The default name
of the generated archive is the first entry of the FunctionFiles argument.
Example: 'ArchiveName','MyMagic'
Data Types: char | string

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the production server archive.

• If you set this property to 'off', then you must add data files to the archive using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','off'
Data Types: logical

FunctionSignatures — Path to JSON file
character vector | string scalar

7 Functions

7-28

Path to a JSON file that details the signatures of all functions listed in FunctionFiles, specified as a
character vector or a string scalar. For information on specifying function signatures, see “MATLAB
Function Signatures in JSON” (MATLAB Production Server).
Example: 'FunctionSignatures','D:\Documents\MATLAB\work\magicapp
\signatures.json'

Data Types: char | string

ObfuscateArchive — Flag to obfuscate deployable archive
'off' (default) | on/off logical value

Flag to obfuscate the deployable archive, specified as 'on' or 'off', or as numeric or logical 1
(true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus,
you can use the value of this property as a logical value. The value is stored as an on/off logical value
of type matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then folder structures and file names in the deployable archive
are obfuscated from the end user, and user code and data contained in MATLAB files are placed
into a user package within the archive. Additionally, all .m files are converted to P-files before
packaging. This option is equivalent to using mcc with -j and -s specified.

• If you set this property to 'off', then the deployable archive is not obfuscated. This is the default
behavior.

Example: 'ObfuscateArchive','on'
Data Types: logical

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the archive name appended with
productionServerArchive.
Example: 'OutputDir','D:\Documents\MATLAB\work\MyMagicproductionServerArchive'

SupportPackages — Support packages
'autodetect' (default) | 'none' | string scalar | cell array of character vectors | string array

Support packages to include, specified as one of the following options:

• 'autodetect' (default) — The dependency analysis process detects and includes the required
support packages automatically.

• 'none' — No support packages are included. Using this option can cause runtime errors.
• A string scalar, character vector, or cell array of character vectors — Only the specified support

packages are included. To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages.

Example: 'SupportPackages',{'Deep Learning Toolbox Converter for TensorFlow
Models','Deep Learning Toolbox Model for Places365-GoogLeNet Network'}

Data Types: char | string | cell

 compiler.build.ProductionServerArchiveOptions

7-29

Verbose — Build verbosity
'off' (default) | on/off logical value

Build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','off'
Data Types: logical

Output Arguments
opts — Production server archive build options
ProductionServerArchiveOptions object

Production server archive build options, returned as a ProductionServerArchiveOptions object.

Version History
Introduced in R2020b

See Also
productionServerCompiler

7 Functions

7-30

compiler.build.Results
Compiler build results object

Description
A compiler.build.Results object contains information about the build type, generated files,
support packages, and build options of a compiler.build function.

All Results properties are read-only. You can use dot notation to query these properties.

For information on results from compiling standalone applications, Excel add-ins, or web app
archives, see compiler.build.Results for MATLAB Compiler.

Creation
There are several ways to create a compiler.build.Results object.

• Create a production server archive using compiler.build.productionServerArchive
(example on page 7-34).

• Create a COM component using compiler.build.comComponent (example on page 7-34).
• Create a C shared library using compiler.build.cSharedLibrary (example on page 7-34).
• Create a C++ shared library using compiler.build.cppSharedLibrary (example on page 7-

35).
• Create a .NET assembly using compiler.build.dotNETAssembly (example on page 7-35).
• Create a Java package using compiler.build.javaPackage (example on page 7-36).
• Create a Python package using compiler.build.pythonPackage (example on page 7-36).
• Create an Excel add-in for MATLAB Production Server using

compiler.build.excelClientForProductionServer (example on page 7-37).

Properties
BuildType — Build type
'productionServerArchive' | 'comComponent' | 'cSharedLibrary' | 'cppSharedLibrary'
| 'dotNETAssembly' | 'javaPackage' | 'pythonPackage' |
'excelClientForProductionServer'

This property is read-only.

The build type of the compiler.build function used to generate the results, specified as a
character vector:

compiler.build Function Build Type
compiler.build.productionServerArchive 'productionServerArchive'
compiler.build.comComponent 'comComponent'

 compiler.build.Results

7-31

compiler.build Function Build Type
compiler.build.cSharedLibrary 'cSharedLibrary'
compiler.build.cppSharedLibrary 'cppSharedLibrary'
compiler.build.dotNETAssembly 'dotNETAssembly'
compiler.build.javaPackage 'javaPackage'
compiler.build.pythonPackage 'pythonPackage'
compiler.build.excelClientForProductio
nServer

'excelClientForProductionServer'

Data Types: char

Files — Paths to compiled files
cell array of character vectors

This property is read-only.

Paths to the compiled files of the compiler.build function used to generate the results, specified
as a cell array of character vectors.

Build Type Files
'productionServerArchive' 1×1 cell array

 {'path\to\ArchiveName.ctf'}

'comComponent' 2×1 cell array

 {'path\to\ComponentName_ComponentVersion.dll'}
 {'path\to\GettingStarted.html'}

'cSharedLibrary' 4×1 cell array

 {'path\to\LibraryName.h'}
 {'path\to\LibraryName.dll'}
 {'path\to\LibraryName.lib'}
 {'path\to\GettingStarted.html'}

'cppSharedLibrary' 2×1 or 4×1 cell array

Using the matlab-data interface:

 {'path\to\v2\'}
 {'path\to\GettingStarted.html'}

Using the mwArray interface:

 {'path\to\LibraryName.h'}
 {'path\to\LibraryName.dll'}
 {'path\to\LibraryName.lib'}
 {'path\to\GettingStarted.html'}

7 Functions

7-32

Build Type Files
'dotNETAssembly' 4×1 cell array

 {'path\to\AssemblyName.dll'}
 {'path\to\AssemblyNameNative.dll'}
 {'path\to\AssemblyName_overview.html'}
 {'path\to\GettingStarted.html'}

'javaPackage' 3×1 cell array

 {'path\to\PackageName.jar'}
 {'path\to\doc\'}
 {'path\to\GettingStarted.html'}

'pythonPackage' 3×1 cell array

 {'path\to\example\'}
 {'path\to\setup.py'}
 {'path\to\GettingStarted.html'}

Example: {'D:\Documents\MATLAB\work\MagicSquareproductionServerArchive
\MagicSquare.ctf'}

Data Types: cell

IncludedSupportPackages — Support packages
cell array of character vectors

This property is read-only.

Support packages included in the generated component, specified as a cell array of character vectors.

Options — Build options
ProductionServerArchiveOptions | COMComponentOptions | CSharedLibraryOptions |
CppSharedLibraryOptions | DotNETAssemblyOptions | JavaPackageOptions |
PythonPackageOptions | ExcelClientForProductionServerOptions

This property is read-only.

Build options of the compiler.build function used to generate the results, specified as an options
object of the corresponding build type.

Build Type Options
'productionServerArchive' ProductionServerArchiveOptions
'comComponent' COMComponentOptions
'cSharedLibrary' CSharedLibraryOptions
'cppSharedLibrary' CppSharedLibraryOptions
'dotNETAssembly' DotNETAssemblyOptions
'javaPackage' JavaPackageOptions
'pythonPackage' PythonPackageOptions
'excelClientForProductionServer' ExcelClientForProductionServerOptions

 compiler.build.Results

7-33

Examples

Get Build Information from Production Server Archive

Create a production server archive and save information about the build type, archive file, included
support packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m.
results = compiler.build.productionServerArchive(magicsquare.m')

results =

 Results with properties:

 BuildType: 'productionServerArchive'
 Files: {'D:\Documents\MATLAB\work\magicsquareproductionServerArchive\magicsquare.ctf'}
 IncludedSupportPackages: {}
 Options: [1×1 compiler.build.ProductionServerArchiveOptions]

The Files property contains the path to the deployable archive file magicsquare.ctf.

Get Build Information from COM Component

Create a COM component on a Windows system and save information about the build type, generated
files, included support packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m.
results = compiler.build.comComponent('magicsquare.m')

results =

 Results with properties:

 BuildType: 'comComponent'
 Files: {2×1 cell}
IncludedSupportPackages: {}
 Options: [1×1 compiler.build.COMComponentOptions]

The Files property contains the paths to the following compiled files:

• magicsquare_1_0.dll
• GettingStarted.html

Get Build Information from C Library

Create a C library and save information about the build type, compiled files, included support
packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m.
results = compiler.build.cSharedLibrary('magicsquare.m')

results =

7 Functions

7-34

 Results with properties:

 BuildType: 'cSharedLibrary'
 Files: {4×1 cell}
IncludedSupportPackages: {}
 Options: [1×1 compiler.build.CSharedLibraryOptions]

The Files property contains the paths to the following files:

• magicsquare.dll
• magicsquare.lib
• magicsquare.h
• GettingStarted.html

Get Build Information from C++ Library

Create a C++ library and save information about the build type, compiled files, support packages,
and build options to a compiler.build.Results object.

Compile using the file magicsquare.m.
results = compiler.build.cppSharedLibrary('magicsquare.m')

results =

 Results with properties:

 BuildType: 'cppSharedLibrary'
 Files: {2×1 cell}
IncludedSupportPackages: {}
 Options: [1×1 compiler.build.CppSharedLibraryOptions]

The Files property contains the paths to the v2 folder and GettingStarted.html.

Get Build Information from .NET Assembly

Create a .NET assembly on a Windows system and save information about the build type, generated
files, included support packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m.
results = compiler.build.dotNETAssembly('magicsquare.m')

results =

 Results with properties:

 BuildType: 'dotNETAssembly'
 Files: {4×1 cell}
IncludedSupportPackages: {}
 Options: [1×1 compiler.build.DotNETAssemblyOptions]

The Files property contains the paths to the following compiled files:

 compiler.build.Results

7-35

• magicsquare.dll
• magicsquareNative.dll
• magicsquare_overview.dll
• GettingStarted.html

Get Build Information from Java Package

Create a Java package and save information about the build type, generated files, included support
packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m.
results = compiler.build.javaPackage('magicsquare.m')

results =

 Results with properties:

 BuildType: 'javaPackage'
 Files: {3×1 cell}
IncludedSupportPackages: {}
 Options: [1×1 compiler.build.JavaPackageOptions]

The Files property contains the paths to the following:

• doc folder
• magicsquare.jar
• GettingStarted.html

Get Build Information from Python Package

Create a Python package and save information about the build type, generated files, included support
packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m.
results = compiler.build.pythonPackage('magicsquare.m');

results =

 Results with properties:

 BuildType: 'pythonPackage'
 Files: {3×1 cell}
IncludedSupportPackages: {}
 Options: [1×1 compiler.build.PythonPackageOptions]

The Files property contains the paths to the following:

• example folder
• setup.py

7 Functions

7-36

• GettingStarted.html

Get Build Information from Excel Add-In for MATLAB Production Server

Create an Excel add-in for MATLAB Production Server and save information about the build type,
generated files, included support packages, and build options to a compiler.build.Results
object.

Build a MATLAB Production Server archive using the file magicsquare.m. Save the output as a
compiler.build.Results object serverBuildResults.
serverBuildResults = compiler.build.productionServerArchive('magicsquare.m');

Build the Excel add-in using the serverBuildResults object.
results = compiler.build.excelClientForProductionServer(serverBuildResults)

results =

 Results with properties:

 BuildType: 'excelClientForProductionServer'
 Files: {1×1 cell}
IncludedSupportPackages: {}
 Options: [1×1 compiler.build.ExcelClientForProductionServerOptions]

The Files property contains the paths to the following compiled files:

• magicsquare.dll
• magicsquare.bas
• magicsquare.xla

Note The files magicsquare.bas and magicsquare.xla are included in Files only if you enable
the 'GenerateVisualBasicFile' option in the
compiler.build.excelClientForProductionServer command.

Version History
Introduced in R2020b

See Also
compiler.build.productionServerArchive | compiler.build.comComponent |
compiler.build.cSharedLibrary | compiler.build.cppSharedLibrary |
compiler.build.dotNETAssembly | compiler.build.javaPackage |
compiler.build.pythonPackage | compiler.build.excelClientForProductionServer

 compiler.build.Results

7-37

compiler.package.microserviceDockerImage
Create a microservice Docker image using files generated by MATLAB Compiler SDK

Syntax
compiler.package.microserviceDockerImage(results)
compiler.package.microserviceDockerImage(results,Name,Value)
compiler.package.microserviceDockerImage(results,'Options',opts)
compiler.package.microserviceDockerImage(files,filepath,'ImageName',
imageName)
compiler.package.microserviceDockerImage(files,filepath,'ImageName',
imageName,Name,Value)
compiler.package.microserviceDockerImage(files,filepath,'Options',opts)

Description
compiler.package.microserviceDockerImage(results) creates a Docker image for files
generated by the MATLAB Compiler SDK using the compiler.build.Results object results. The
results object is created by the compiler.build.productionServerArchive function.

compiler.package.microserviceDockerImage(results,Name,Value) creates a Docker
image using the compiler.build.Results object results and additional options specified as one
or more name-value arguments. Options include the build folder, entry point command, and image
name.

compiler.package.microserviceDockerImage(results,'Options',opts) creates a Docker
image using the compiler.build.Results object results and additional options specified by a
MicroserviceDockerImageOptions object opts. If you use a
MicroserviceDockerImageOptions object, you cannot specify any other options using name-value
arguments.

compiler.package.microserviceDockerImage(files,filepath,'ImageName',
imageName) creates a Docker image using files that are generated by MATLAB Compiler SDK. The
Docker image name is specified by imageName.

compiler.package.microserviceDockerImage(files,filepath,'ImageName',
imageName,Name,Value) creates a Docker image using files that are generated by MATLAB
Compiler SDK. Additional options are specified as one or more name-value arguments.

compiler.package.microserviceDockerImage(files,filepath,'Options',opts) creates
a Docker image using files that are generated by MATLAB Compiler SDK and additional options
specified by a MicroserviceDockerImageOptions object opts. If you use a
MicroserviceDockerImageOptions object, you cannot specify any other options using name-value
arguments.

Examples

7 Functions

7-38

Create Microservice Docker Image Using Results

Create a microservice Docker image from a production server archive.

Install and configure Docker on your system. For details, see the prerequisites section of “Create
Microservice Docker Image” on page 1-12.

Create a production server archive using magicsquare.m and save the build results to a
compiler.build.Results object.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.productionServerArchive(appFile);

Pass the Results object as an input to the compiler.package.microserviceDockerImage
function to build the Docker image.
compiler.package.microserviceDockerImage(buildResults);

The function generates the following files within a folder named
magicsquaremicroserviceDockerImage in your current working directory:

• applicationFilesForMATLABCompiler/magicsquare.ctf — Deployable archive file.
• Dockerfile — Docker file that specifies Docker run time options.
• GettingStarted.txt — Text file that contains deployment information.

To deploy the image to Docker using port 9900 on the host machine, run the following command in a
system terminal:

docker run --rm -p 9900:9910 magicsquare

Customize Microservice Docker Image Using Results and Name Value Arguments

Customize a microservice image using name-value arguments on a Linux system to specify the image
name and build directory.

Create a production server archive using magicsquare.m and save the build results to a
compiler.build.Results object.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.productionServerArchive(appFile);

Call the compiler.package.microserviceDockerImage function using the Results object. Use
name-value pair arguments to specify the image name and build folder, and disable the call to build
the Docker image.
compiler.package.microserviceDockerImage(buildResults,...
'ImageName','mymagicapp',...
'DockerContext','/home/mluser/Documents/MATLAB/docker',...
'ExecuteDockerBuild','Off');

This syntax populates the context folder with the Docker files.

After you have examined the generated files, use the command docker build to build the Docker
image. For details, refer to the Docker documentation.

 compiler.package.microserviceDockerImage

7-39

https://docs.docker.com

Customize Microservice Docker Image Using Results and Options Object

Customize a Docker image using a MicroserviceDockerImageOptions object.

Write a function named hello-world.m using the following code.

disp('Hello world!');

Create a production server archive using hello-world.m and save the build results to a
compiler.build.Results object.

buildResults = compiler.build.productionServerArchive('hello-world.m');

Create a MicroserviceDockerImageOptions object to specify additional build options.

opts = compiler.package.microserviceDockerImageOptions(buildResults,
'DockerContext','hellodocker')

opts =

 MicroserviceDockerImageOptions with properties:

 ExecuteDockerBuild: on
 ImageName: 'helloworld'
 DockerContext: 'hellodocker'

Pass the MicroserviceDockerImageOptions and Results objects as inputs to the
compiler.package.microserviceDockerImage function to build the Docker image.
compiler.package.microserviceDockerImage(buildResults,'Options',opts);

Create Microservice Docker Image Using Files and Name Value Arguments

Create a Docker image using files generated by MATLAB Compiler SDK and specify the image name.

Build a production server archive using the mcc command.

mcc -W CTF:myapp -U magicsquare.m

Build the Docker image by passing the generated files to the
compiler.package.microserviceDockerImage function.
compiler.package.microserviceDockerImage('myapp.ctf',...
'requiredMCRProducts.txt','ImageName','microapp');

Customize Microservice Docker Image Using Files and Options Object

Customize a Docker image using files generated by MATLAB Compiler SDK and a
MicroserviceDockerImageOptions object.

Create a production server archive using helloworld.m and save the build results to a
compiler.build.Results object..

buildResults = compiler.build.productionServerArchive('helloworld.m');

7 Functions

7-40

Create a MicroserviceDockerImageOptions object to specify additional build options, such as
the build folder.
opts = compiler.package.MicroserviceDockerImageOptions(buildResults,...
'DockerContext','DockerImages')

You can modify property values of an existing MicroserviceDockerImageOptions object using dot
notation. For example, disable the call to build the Docker image.
opts.ExecuteDockerBuild = 'Off';

Populate the DockerContext folder with the Docker files by passing the files and options object to
the compiler.package.microserviceDockerImage function.
cd helloworldproductionServerArchive

compiler.package.microserviceDockerImage('helloworld',...
'requiredMCRProducts.txt','Options',opts);

Input Arguments
results — Build results
compiler.build.Results object

Build results created by the compiler.build.productionServerArchive function, specified as a
compiler.build.Results object.

files — Files and folders for installation
character vector | string scalar | string array | cell array of strings

Files and folders for installation, specified as a character vector, string scalar, string array, or cell
array of strings. Exactly one of these files must be a CTF file generated by MATLAB Compiler SDK.
The list can also include any additional files and folders required by the service to run. You can
package files generated by MATLAB Compiler SDK in a particular release using the
compiler.package.microserviceDockerImage function of the same release.
Example: 'myDockerFiles/'
Data Types: char | string | cell

filepath — Path to requiredMCRProducts.txt file
character vector | string scalar

Path to the requiredMCRProducts.txt file, specified as a character vector or string scalar. This
file is generated by MATLAB Compiler SDK. The path can be relative to the current working directory
or absolute.
Example: '/home/mluser/Documents/MATLAB/magicsquare/requiredMCRProducts.txt'
Data Types: char | string

imageName — Name of Docker image
character vector | string scalar

Name of the Docker image. It must comply with Docker naming rules.
Example: 'hello-world'
Data Types: char | string

 compiler.package.microserviceDockerImage

7-41

opts — Docker options
MicroserviceDockerImageOptions object

Microservice Docker options, specified as a MicroserviceDockerImageOptions object.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ExecuteDockerBuild','on'

AdditionalCommands — Additional commands to pass to Docker image
'' (default) | character vector | string scalar | cell array of character vectors

Additional commands to pass to the Docker image, specified as a character vector, a string scalar, or
a cell array of character vectors. Commands are added to the Dockerfile and execute during image
generation.
Example: 'AdditionalCommands','top'
Data Types: char | string

AdditionalPackages — Additional packages to install into Docker image
'' (default) | character vector | string scalar | cell array of character vectors

Additional Ubuntu® 20.04 packages to install into the Docker image, specified as a character vector, a
string scalar, or a cell array of character vectors.
Example: 'AdditionalPackages,'syslog-ng'
Data Types: char | string

DockerContext — Path to build folder
'ImageNamedocker' (default) | character vector | string scalar

Path to the build folder where the Docker image is built, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

If no path is specified, the function creates a build folder named ImageNamedocker in the current
working directory.
Example: 'DockerContext','/home/mluser/Documents/MATLAB/docker/
magicsquaredocker'

Data Types: char | string

ExecuteDockerBuild — Flag to build Docker image
'on' (default) | on/off logical value

Flag to build the Docker image, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

7 Functions

7-42

• If you set this property to 'on', then the function will build the Docker image.
• If you set this property to 'off', then the function will populate the DockerContext folder

without calling 'docker build'.

Example: 'ExecuteDockerBuild','Off'
Data Types: logical

ImageName — Name of Docker image
'' (default) | character vector | string scalar

Name of the Docker image, specified as a character vector or a string scalar. The name must comply
with Docker naming rules. Docker repository names must be lowercase. If the main executable or
archive file is named using uppercase letters, then the uppercase letters are replaced with lowercase
letters in the Docker image name.
Example: 'ImageName','magicsquare'
Data Types: char | string

Limitations
• In R2022a, this function is only supported on Linux operating systems.

Version History
Introduced in R2022a

See Also
compiler.package.MicroserviceDockerImageOptions | compiler.build.Results |
compiler.build.productionServerArchive

Topics
“Create Microservice Docker Image” on page 1-12

 compiler.package.microserviceDockerImage

7-43

compiler.package.MicroserviceDockerImageOption
s
Create a microservice Docker options object

Syntax
opts = compiler.package.MicroserviceDockerImageOptions(results)
opts = compiler.package.MicroserviceDockerImageOptions(results,Name,Value)
opts = compiler.package.MicroserviceDockerImageOptions('ImageName',imageName)
opts = compiler.package.MicroserviceDockerImageOptions('ImageName',imageName,
Name,Value)

Description
opts = compiler.package.MicroserviceDockerImageOptions(results) creates a
MicroserviceDockerImageOptions object opts using the compiler.build.Results object
results. The Results object is created by the compiler.build.productionServerArchive
function. Pass the MicroserviceDockerImageOptions object as an input to the
compiler.package.docker function to specify build options.

opts = compiler.package.MicroserviceDockerImageOptions(results,Name,Value)
creates a MicroserviceDockerImageOptions object opts using the compiler.build.Results
object results and additional options specified as one or more pairs of name-value arguments.
Options include the build folder, entry point command, and image name.

opts = compiler.package.MicroserviceDockerImageOptions('ImageName',imageName)
creates a default MicroserviceDockerImageOptions object with the image name specified by
imageName.

opts = compiler.package.MicroserviceDockerImageOptions('ImageName',imageName,
Name,Value) creates a generic MicroserviceDockerImageOptions object with the image name
specified by imageName and additional options specified as one or more pairs of name-value
arguments.

Examples

Create Microservices Docker Options Object Using Build Results

Create a MicroserviceDockerImageOptions object using the build results from a production
server archive.

Create a production server archive using magicsquare.m and save the build results to a
compiler.build.Results object.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.productionServerArchive(appFile);

7 Functions

7-44

Create a MicroserviceDockerImageOptions object using the build results from the
compiler.build.productionServerArchive function.

opts = compiler.package.MicroserviceDockerImageOptions(buildResults);

You can modify property values of an existing MicroserviceDockerImageOptions object using dot
notation. For example, set the build folder.
opts.DockerContext = 'myDockerFiles';

Pass the MicroserviceDockerImageOptions and Results objects as inputs to the
compiler.package.microserviceDockerImage function to build the microservice Docker image.
compiler.package.microserviceDockerImage(buildResults,'Options',opts);

Customize Microservice Docker Options Object Using Build Results

Create a MicroserviceDockerImageOptions object using build results from a production server
archive and customize it using name-value arguments.

Create a production server archive using magicsquare.m and save the build results to a
compiler.build.Results object.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.productionServerArchive(appFile);

Create a MicroserviceDockerImageOptions object using the build results from the
compiler.build.productionServerArchive function. Use name-value arguments to specify the
image name and build folder.
opts = compiler.package.MicroserviceDockerImageOptions(buildResults,...
'DockerContext','Docker/MagicSquareMicroservice',...
'ImageName','magicsquare-microservice-')

opts =

 MicroserviceDockerImageOptions with properties:

 AdditionalCommands: {}
 AdditionalPackages: {}
 ExecuteDockerBuild: on
 ImageName: 'magic-square-'
 DockerContext: './Docker/MagicSquareMicroservice/magicsquare-microservice-docker'

Create Microservices Docker Options Object Using Image Name

Create a generic MicroserviceDockerImageOptions object by only specifying the image name.

Create a MicroserviceDockerImageOptions object.

opts = compiler.package.MicroserviceDockerImageOptions('ImageName','helloworld')

opts =

 MicroserviceDockerImageOptions with properties:

 AdditionalCommands: {}
 AdditionalPackages: {}
 ExecuteDockerBuild: on

 compiler.package.MicroserviceDockerImageOptions

7-45

 ImageName: 'helloworld'
 DockerContext: './helloworlddocker'

Customize Microservices Docker Options Object Using Image Name

Create a MicroserviceDockerImageOptions object using the image name and customize it using
name-value arguments.

Create a MicroserviceDockerImageOptions object. Use name-value arguments to specify the
image name and build folder.

opts = compiler.package.MicroserviceDockerImageOptions('ImageName','myapp',...
'DockerContext','Docker/MyDockerApp')

opts =

 MicroserviceDockerImageOptions with properties:

 AdditionalCommands: {}
 AdditionalPackages: {}
 ExecuteDockerBuild: on
 ImageName: 'myapp'
 DockerContext: './Docker/MyDockerApp'

Input Arguments
results — Build results
compiler.build.Results object

Build results from the compiler.build.productionServerArchive function, specified as a
compiler.build.Results object.

imageName — Name of Docker image
character vector | string scalar

Name of the Docker image. It must comply with Docker naming rules.
Example: 'hello-world'
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ExecuteDockerBuild','on'

AdditionalCommands — Additional commands to pass to Docker image
'' (default) | character vector | string scalar | cell array of character vectors

7 Functions

7-46

Additional commands to pass to the Docker image, specified as a character vector, a string scalar, or
a cell array of character vectors. Commands are added to the Dockerfile and execute during image
generation.
Example: 'AdditionalCommands','top'
Data Types: char | string

AdditionalPackages — Additional packages to install into Docker image
'' (default) | character vector | string scalar | cell array of character vectors

Additional Ubuntu 20.04 packages to install into the Docker image, specified as a character vector, a
string scalar, or a cell array of character vectors.
Example: 'AdditionalPackages,'syslog-ng'
Data Types: char | string

DockerContext — Path to build folder
'ImageNamedocker' (default) | character vector | string scalar

Path to the build folder where the Docker image is built, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

If no path is specified, the function creates a build folder named ImageNamedocker in the current
working directory.
Example: 'DockerContext','/home/mluser/Documents/MATLAB/docker/
magicsquaredocker'

Data Types: char | string

ExecuteDockerBuild — Flag to build Docker image
'on' (default) | on/off logical value

Flag to build the Docker image, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function will build the Docker image.
• If you set this property to 'off', then the function will populate the DockerContext folder

without calling 'docker build'.

Example: 'ExecuteDockerBuild','Off'
Data Types: logical

ImageName — Name of Docker image
'' (default) | character vector | string scalar

Name of the Docker image, specified as a character vector or a string scalar. The name must comply
with Docker naming rules. Docker repository names must be lowercase. If the main executable or
archive file is named using uppercase letters, then the uppercase letters are replaced with lowercase
letters in the Docker image name.
Example: 'ImageName','magicsquare'
Data Types: char | string

 compiler.package.MicroserviceDockerImageOptions

7-47

Output Arguments
opts — Microservice Docker options object
MicroserviceDockerImageOptions object

Microservice Docker image build options, returned as a MicroserviceDockerImageOptions
object.

Limitations
• In R2022a, this function is only supported on Linux operating systems.

Version History
Introduced in R2022a

See Also
compiler.package.microserviceDockerImage | compiler.build.Results |
compiler.build.productionServerArchive

7 Functions

7-48

compiler.runtime.createInstallerDockerImage
Create a MATLAB Runtime installer Docker image on offline machines

Syntax
compiler.runtime.createInstallerDockerImage()
compiler.runtime.createInstallerDockerImage(filepath)

Description

Note You do not need to run this command if you are connected to the Docker image repository.

compiler.runtime.createInstallerDockerImage() creates a MATLAB Runtime installer
Docker image using the installer file provided by the compiler.runtime.installer function, in
cases where MATLAB is unable to reach the Docker image repository. The installer image is used to
create microservice Docker images using compiler.package.docker and
compiler.package.microserviceDockerImage. This workflow is only supported on Linux.

compiler.runtime.createInstallerDockerImage(filepath) creates a MATLAB Runtime
installer Docker image using the installer file provided by filepath. This workflow is supported on
all platforms.

Examples

Build Runtime Installer Docker Image on Linux

Here, you create a MATLAB Runtime installer Docker image on Linux.

Install and configure Docker on your system.

Create the Docker image.

compiler.runtime.createInstallerDockerImage()

Build Runtime Installer Docker Image on Other Platforms

Here, you create a MATLAB Runtime installer Docker image on Windows for R2023a.

Install and configure Docker on your system. For details, see the prerequisites section of “Create
Microservice Docker Image” on page 1-12.

Download the MATLAB Runtime installer for Linux for the R2023a release from https://
www.mathworks.com/products/compiler/matlab-runtime.html.

Create the Docker image using the path to the installer archive. For example, if it is located in the
Downloads folder of mwuser, type the following command.

 compiler.runtime.createInstallerDockerImage

7-49

https://www.docker.com/
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

compiler.runtime.createInstallerDockerImage("C:\Users\mwuser\Downloads\MATLAB_Runtime_R2023a_glnxa64.zip")

Input Arguments
filepath — Path to MATLAB Runtime installer file for Linux
character vector | string scalar

Path to the MATLAB Runtime installer file for Linux, specified as a character vector or string scalar.
The path can be relative to the current working directory or absolute.
Example: "C:\Users\mwuser\Downloads\MATLAB_Runtime_R2022b_Update_1_glnxa64.zip"
Data Types: char | string

Version History
Introduced in R2022b

See Also
compiler.package.docker | compiler.package.microserviceDockerImage |
compiler.runtime.download

Topics
“Package MATLAB Standalone Applications into Docker Images”
“Create Microservice Docker Image” on page 1-12

7 Functions

7-50

productionServerCompiler
Test, build and package functions for use with MATLAB Production Server

Syntax
productionServerCompiler
productionServerCompiler project_name

Description
productionServerCompiler opens the Production Server Compiler app for the creation of a new
compiler project.

productionServerCompiler project_name opens the Production Server Compiler app with the
project preloaded.

Examples

Create a New Production Server Project

Open the Production Server Compiler app to create a new project.

productionServerCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Version History
Introduced in R2014a

R2020a: -build and -package options will be removed
Warns starting in R2020a

The -build and -package options will be removed. To generate deployable archives, use the
compiler.build.productionServerArchive function, or the mcc command, or the Production
Server Compiler app.

 productionServerCompiler

7-51

Apps

8

Production Server Compiler
Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler app tests the integration of client code with MATLAB functions. It
also packages MATLAB functions into archives for deployment to MATLAB Production Server.

8 Apps

8-2

 Production Server Compiler

8-3

Open the Production Server Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter deploytool. Click Production Server Compiler.
• MATLAB command prompt: Enter productionServerCompiler.

Examples
• “Create Deployable Archive for MATLAB Production Server” on page 1-2
• “Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server”
• “Test Client Data Integration Against MATLAB” on page 4-3

Parameters
type — type of archive generated
Deployable Archive | Deployable Archive with Excel Integration

Type of archive to generate as a character array.

exported functions — functions to package
list of character arrays

Functions to package as a list of character arrays.

archive information — name of the archive
character array

Name of the archive as a character array.

files required for your archive to run — files that must be included with archive
list of files

Files that must be included with archive as a list of files.

files packaged with the archive — optional files installed with archive
list of files

Optional files installed with archive as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character array

Flags controlling the behavior of the compiler as a character array.

testing files — folder where files for testing are stored
character array

Folder where files for testing are stored as a character array.

8 Apps

8-4

end user files — folder where files for building a custom installer are stored
character array

Folder where files for building a custom installer are stored are stored as a character array.

packaged installers — folder where generated installers are stored
character array

Folder where generated installers are stored as a character array.

Programmatic Use
Enter productionServerCompiler.

Alternatively, enter deploytool and click Production Server Compiler.

Version History
Introduced in R2013b

See Also
deploytool | compiler.build.productionServerArchive | mcc

Topics
“Create Deployable Archive for MATLAB Production Server” on page 1-2
“Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server”
“Test Client Data Integration Against MATLAB” on page 4-3

 Production Server Compiler

8-5

Client Programming

9

Create MATLAB Production Server Java Client Using
MWHttpClient Class

This example shows how to write a MATLAB Production Server client using the MWHttpClient class
from the Java client API. For information on obtaining the Java client library, see “Obtain and
Configure Client Library” (MATLAB Production Server). In your Java code, you will:

• Define a Java interface that represents the deployed MATLAB function.
• Instantiate a static proxy object to communicate with the server.
• Call the deployed function in your Java code.

To create a Java MATLAB Production Server client application:

1 Create a new file, for example, MPSClientExample.java.
2 Using a text editor, open MPSClientExample.java.
3 Add the following import statements to the file:

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

4 Add a Java interface that represents the deployed MATLAB function.

For example, consider the following addmatrix function deployed to the server. For information
on writing and compiling the function for deployment, see “Create Deployable Archive for
MATLAB Production Server” (MATLAB Production Server). For deploying the function to the
server, see “Deploy Archive to MATLAB Production Server” (MATLAB Production Server).

function a = addmatrix(a1,a2)

a = a1 + a2;

The interface for the addmatrix function follows.

interface MATLABAddMatrix {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

When creating the interface, note the following:

• You can give the interface any valid Java name.
• You must give the method defined by this interface the same name as the deployed MATLAB

function.
• The Java method must support the same inputs and outputs supported by the MATLAB

function, in both type and number. For more information about data type conversions and how
to handle more complex MATLAB function signatures, see “Data Conversion with Java and
MATLAB Types” (MATLAB Production Server) and “Conversion of Java Types to MATLAB
Types” (MATLAB Production Server).

• The Java method must handle MATLAB exceptions and I/O exceptions.
5 Add the following class definition:

9 Client Programming

9-2

public class MPSClientExample
{
}

This class now has a single main method that calls the generated class.
6 Add the main() method to the application.

public static void main(String[] args)
{
}

7 Add the following code to the top of the main() method to initialize the variables used by the
application:

double[][] a1={{1,2,3},{3,2,1}};
double[][] a2={{4,5,6},{6,5,4}};

8 Instantiate a client object using the MWHttpClient constructor.

MWClient client = new MWHttpClient();

This class establishes an HTTP connection between the application and the server instance.
9 Call the createProxy method of the client object to create a dynamic proxy.

You must specify the URL of the deployable archive and the name of your interface class as
arguments:

MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);

The URL value ("http://localhost:9910/addmatrix") used to create the proxy contains
three parts:

• the server address (localhost).
• the port number (9910).
• the archive name (addmatrix)

For more information about the createProxy method, see the Javadoc included in the
matlabroot/toolbox/compiler_sdk/mps_clients folder.

10 Call the deployed MATLAB function in your Java application by calling the public method of the
interface.

 double[][] result = m.addmatrix(a1,a2);
11 Call the close() method of the client object to free system resources.

client.close();
12 Save the Java file.

The completed Java file should resemble the following:
import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix
 {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

public class MPSClientExample {

 Create MATLAB Production Server Java Client Using MWHttpClient Class

9-3

 public static void main(String[] args){

 double[][] a1={{1,2,3},{3,2,1}};
 double[][] a2={{4,5,6},{6,5,4}};

 MWClient client = new MWHttpClient();

 try{
 MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);
 double[][] result = m.addmatrix(a1,a2);

 // Print the resulting matrix
 printResult(result);

 }catch(MATLABException ex){

 // This exception represents errors in MATLAB
 System.out.println(ex);
 }catch(IOException ex){

 // This exception represents network issues.
 System.out.println(ex);
 }finally{

 client.close();
 }
 }

 private static void printResult(double[][] result){
 for(double[] row : result){
 for(double element : row){
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

13 Compile the Java application, using the javac command or use the build capability of your Java
IDE.

For example, enter the following at the Windows command prompt:
javac -classpath "matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample.java

14 Run the application using the java command or your IDE.

For example, enter the following at the Windows command prompt:
java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample

To run the application on Linux and macOS systems, use a colon (:) to separate multiple paths.

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

See Also

More About
• “Bond Pricing Tool for Java Client” (MATLAB Production Server)
• “MATLAB Production Server Java Client Basics” (MATLAB Production Server)
• “Synchronous RESTful Requests Using Protocol Buffers in the Java Client” (MATLAB Production

Server)

9 Client Programming

9-4

• “Asynchronous RESTful Requests Using Protocol Buffers in the Java Client” (MATLAB
Production Server)

 Create MATLAB Production Server Java Client Using MWHttpClient Class

9-5

Create a C# Client
This example shows how to write a C# application to call a MATLAB function deployed to MATLAB
Production Server. The C# application uses the MATLAB Production Server .NET client library.

A .NET application programmer typically performs this task. The tutorial assumes that you have
Microsoft Visual Studio® and .NET installed on your computer.

Create Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.
2 Click File > New > Project.
3 In the New Project dialog box, select the template you want to use. For example, if you want to

create a C# console application in Visual Studio 2017, select Visual C# > Windows Desktop in
the left navigation pane, then select the Console App (.Net Framework).

4 Type the name of the project in the Name field (for example, Magic).
5 Click OK. Your Magic source shell is created, typically named Program.cs, by default.

Create Reference to Client Runtime Library

Create a reference in your Magic project to the MATLAB Production Server client runtime library. In
Microsoft Visual Studio, perform the following steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on the right side), right-
click your Magic project, select Add > Browse.

2 Browse to the MATLAB Production Server .NET client runtime library location.

The library is located in matlabroot\toolbox\compiler_sdk\mps_clients\dotnet. Select
the MathWorks.MATLAB.ProductionServer.Client.dll file.

The client library is also available for download at https://www.mathworks.com/products/
matlab-production-server/client-libraries.html.

3 Click OK. Your Microsoft Visual Studio project now references the
MathWorks.MATLAB.ProductionServer.Client.dll.

Deploy MATLAB Function to Server

Write a MATLAB function mymagic that uses the magic function to create a magic square, package
mymagic into a deployable archive called mymagic_deployed, then deploy it to a server. The
function mymagic takes a single int input and returns a magic square as a 2-D double array. The
example assumes that the server instance is running at http://localhost:9910.

function m = mymagic(in)
 m = magic(in);

Design .NET Interface in C#

Invoke the deployed MATLAB function mymagic from a .NET client through a .NET interface. Design
a C# interface Magic to match the MATLAB function mymagic.

• The .NET interface has the same number of inputs and outputs as the MATLAB function.
• Since you are deploying one MATLAB function on the server, you define one corresponding .NET

method in your C# code.

9 Client Programming

9-6

https://www.mathworks.com/products/matlab-production-server/client-libraries.html
https://www.mathworks.com/products/matlab-production-server/client-libraries.html

• Both the MATLAB function and the .NET interface process the same data types—input type int
and output type 2-D double.

• In your C# client program, use the interface Magic to specify the type of the proxy object
reference in the CreateProxy method. The CreateProxy method requires the URL to the
deployable archive that contains the mymagic function (http://localhost:9910/
mymagic_deployed) as an input argument.

 public interface Magic
 {
 double[,] mymagic(int in1);
 }

Write, Build, and Run .NET Application

1 Open the Microsoft Visual Studio project Magic that you created earlier.
2 In the Program.cs tab, paste in the code below.

using System;
using System.Net;
using MathWorks.MATLAB.ProductionServer.Client;

namespace Magic
{
 public class MagicClass
 {

 public interface Magic
 {
 double[,] mymagic(int in1);
 }

 public static void Main(string[] args)
 {
 MWClient client = new MWHttpClient();
 try
 {
 Magic me = client.CreateProxy<Magic>
 (new Uri("http://localhost:9910/mymagic_deployed"));
 double[,] result1 = me.mymagic(4);
 print(result1);
 }
 catch (MATLABException ex)
 {
 Console.WriteLine("{0} MATLAB exception caught.", ex);
 Console.WriteLine(ex.StackTrace);
 }
 catch (WebException ex)
 {
 Console.WriteLine("{0} Web exception caught.", ex);
 Console.WriteLine(ex.StackTrace);
 }
 finally
 {
 client.Dispose();
 }
 Console.ReadLine();
 }

 public static void print(double[,] x)
 {
 int rank = x.Rank;
 int[] dims = new int[rank];

 for (int i = 0; i < rank; i++)
 {
 dims[i] = x.GetLength(i);
 }

 Create a C# Client

9-7

 for (int j = 0; j < dims[0]; j++)
 {
 for (int k = 0; k < dims[1]; k++)
 {
 Console.Write(x[j, k]);
 if (k < (dims[1] - 1))
 {
 Console.Write(",");
 }
 }
 Console.WriteLine();
 }
 }
 }
}

The URL value ("http://localhost:9910/mymagic_deployed") used to create the proxy
contains three parts.

• the server address (localhost).
• the port number (9910).
• the archive name (mymagic_deployed).

3 Build the application. Click Build > Build Solution.
4 Run the application. Click Debug > Start Without Debugging. The program returns the

following console output.

16,2,3,13
5,11,10,8
9,7,6,12
4,14,15,1

See Also

More About
• “Create a .NET MATLAB Production Server Client” (MATLAB Production Server)
• “Configure the Client-Server Connection” (MATLAB Production Server)
• “Synchronous RESTful Requests Using Protocol Buffers in .NET Client” (MATLAB Production

Server)

9 Client Programming

9-8

Create a Python Client
This example shows how to write a MATLAB Production Server client using the Python client API. The
client application calls the addmatrix MATLAB function deployed to a server instance. For
information on writing and compiling the function for deployment, see “Create Deployable Archive for
MATLAB Production Server” (MATLAB Production Server). For deploying the function to the server,
see “Deploy Archive to MATLAB Production Server” (MATLAB Production Server).

Before you write the client application, you must have the MATLAB Production Server Python client
libraries installed on your system. For details, see “Install the MATLAB Production Server Python
Client” (MATLAB Production Server).

1 Start the Python command line interpreter.
2 Enter the following import statements at the Python command prompt.

import matlab
from production_server import client

3 Open the connection to the MATLAB Production Server instance and initialize the client runtime.

client_obj = client.MWHttpClient("http://localhost:9910")
4 Create the MATLAB data to input to the function.

a1 = matlab.double([[1,2,3],[3,2,1]])
a2 = matlab.double([[4,5,6],[6,5,4]])

5 Call the deployed MATLAB function. To call the function, you must know the name of the
deployed archive and the name of the function.

The syntax for invoking a function is client.archiveName.functionName(arg1,
arg2, .., [nargout=numOutArgs]).

client_obj.addmatrix.addmatrix(a1,a2)

The output is:

matlab.double([[5.0,7.0,9.0],[9.0,7.0,5.0]])
6 Close the client connection.

client_obj.close()

See Also
matlab.production_server.client.MWHttpClient

Related Examples
• “Create Client Connection” (MATLAB Production Server)
• “Invoke Packaged MATLAB Functions” (MATLAB Production Server)

 Create a Python Client

9-9

Create a C++ Client
This example shows how to write a MATLAB Production Server client using the C client API. The
client application calls the addmatrix function you compiled in “Package Deployable Archives with
Production Server Compiler App” and deployed in “Deploy Archive to MATLAB Production Server”
(MATLAB Production Server).

Create a C++ MATLAB Production Server client application:

1 Create a file called addmatrix_client.cpp.
2 Using a text editor, open addmatrix_client.cpp.
3 Add the following include statements to the file:

#include <iostream>
#include <mps/client.h>

Note The header files for the MATLAB Production Server C client API are located in the
matlabroot/toolbox/compiler_sdk/mps_clients/c/include/mps folder.

4 Add the main() method to the application.

int main (void)
{
}

5 Initialize the client runtime.

mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);
6 Create the client configuration.

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);

7 Create the client context.

mpsClientContext* context;
status = mpsruntime->createContext(&context, config);

8 Create the MATLAB data to input to the function.

double a1[2][3] = {{1,2,3},{3,2,1}};
double a2[2][3] = {{4,5,6},{6,5,4}};

int numIn=2;
mpsArray** inVal = new mpsArray* [numIn];

inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);

double* data1 = (double *)(mpsGetData(inVal[0]));
double* data2 = (double *)(mpsGetData(inVal[1]));

for(int i=0; i<2; i++)
{
 for(int j=0; j<3; j++)
 {
 mpsIndex subs[] = { i, j };
 mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
 data1[id] = a1[i][j];
 data2[id] = a2[i][j];

9 Client Programming

9-10

 }
}

9 Create the MATLAB data to hold the output.

int numOut = 1;
mpsArray **outVal = new mpsArray* [numOut];

10 Call the deployed MATLAB function.

Specify the following as arguments:

• client context
• URL of the function
• Number of expected outputs
• Pointer to the mpsArray holding the outputs
• Number of inputs
• Pointer to the mpsArray holding the inputs

mpsStatus status = mpsruntime->feval(context,
 "http://localhost:9910/addmatrix/addmatrix",
 numOut, outVal, numIn, (const mpsArray**)inVal);

For more information about the feval function, see the reference material included in the
matlabroot/toolbox/compiler_sdk/mps_clients folder.

11 Verify that the function call was successful using an if statement.

if (status==MPS_OK)
{
}

12 Inside the if statement, add code to process the output.

double* out = mpsGetPr(outVal[0]);

for (int i=0; i<2; i++)
{
 for (int j=0; j<3; j++)
 {
 mpsIndex subs[] = {i, j};
 mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
 std::cout << out[id] << "\t";
 }
 std::cout << std::endl;
}

13 Add an else clause to the if statement to process any errors.

else
{
 mpsErrorInfo error;
 mpsruntime->getLastErrorInfo(context, &error);
 std::cout << "Error: " << error.message << std::endl;
 switch(error.type)
 {
 case MPS_HTTP_ERROR_INFO:
 std::cout << "HTTP: " << error.details.http.responseCode << ": "
 << error.details.http.responseMessage << std::endl;
 case MPS_MATLAB_ERROR_INFO:
 std::cout << "MATLAB: " << error.details.matlab.identifier

 Create a C++ Client

9-11

 << std::endl;
 std::cout << error.details.matlab.message << std::endl;
 case MPS_GENERIC_ERROR_INFO:
 std::cout << "Generic: " << error.details.general.genericErrorMsg
 << std::endl;
 }

 mpsruntime->destroyLastErrorInfo(&error);
}

14 Free the memory used by the inputs.

for (int i=0; i<numIn; i++)
 mpsDestroyArray(inVal[i]);
delete[] inVal;

15 Free the memory used by the outputs.

for (int i=0; i<numOut; i++)
 mpsDestroyArray(outVal[i]);
delete[] outVal;

16 Free the memory used by the client runtime.

mpsruntime->destroyConfig(config);
mpsruntime->destroyContext(context);
mpsTerminate();

17 Save the file.

The completed program should resemble the following:
#include <iostream>
#include <mps/client.h>

int main (void)
{
 mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);

 mpsClientConfig* config;
 mpsStatus status = mpsruntime->createConfig(&config);

 mpsClientContext* context;
 status = mpsruntime->createContext(&context, config);

 double a1[2][3] = {{1,2,3},{3,2,1}};
 double a2[2][3] = {{4,5,6},{6,5,4}};

 int numIn=2;
 mpsArray** inVal = new mpsArray* [numIn];
 inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
 inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);
 double* data1 = (double *)(mpsGetData(inVal[0]));
 double* data2 = (double *)(mpsGetData(inVal[1]));
 for(int i=0; i<2; i++)
 {
 for(int j=0; j<3; j++)
 {
 mpsIndex subs[] = { i, j };
 mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
 data1[id] = a1[i][j];
 data2[id] = a2[i][j];
 }
 }

 int numOut = 1;
 mpsArray **outVal = new mpsArray* [numOut];

 status = mpsruntime->feval(context,
 "http://localhost:9910/addmatrix/addmatrix",
 numOut, outVal, numIn, (const mpsArray **)inVal);

 if (status==MPS_OK)
 {
 double* out = mpsGetPr(outVal[0]);

9 Client Programming

9-12

 for (int i=0; i<2; i++)
 {
 for (int j=0; j<3; j++)
 {
 mpsIndex subs[] = {i, j};
 mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
 std::cout << out[id] << "\t";
 }
 std::cout << std::endl;
 }
 }
 else
 {
 mpsErrorInfo error;
 mpsruntime->getLastErrorInfo(context, &error);
 std::cout << "Error: " << error.message << std::endl;

 switch(error.type)
 {
 case MPS_HTTP_ERROR_INFO:
 std::cout << "HTTP: "
 << error.details.http.responseCode
 << ": " << error.details.http.responseMessage
 << std::endl;
 case MPS_MATLAB_ERROR_INFO:
 std::cout << "MATLAB: " << error.details.matlab.identifier
 << std::endl;
 std::cout << error.details.matlab.message << std::endl;
 case MPS_GENERIC_ERROR_INFO:
 std::cout << "Generic: "
 << error.details.general.genericErrorMsg
 << std::endl;
 }
 mpsruntime->destroyLastErrorInfo(&error);
 }

 for (int i=0; i<numIn; i++)
 mpsDestroyArray(inVal[i]);
 delete[] inVal;

 for (int i=0; i<numOut; i++)
 mpsDestroyArray(outVal[i]);
 delete[] outVal;

 mpsruntime->destroyConfig(config);
 mpsruntime->destroyContext(context);
 mpsTerminate();
}

18 Compile the application.

To compile your client code, the compiler needs access to client.h. This header file is stored in
matlabroot/toolbox/compiler_sdk/mps_clients/c/include/mps/.

To link your application, the linker needs access to the following files stored in matlabroot/
toolbox/compiler_sdk/mps_clients/c/:

Files Required for Linking

Windows UNIX®/Linux Mac OS X
$arch\lib
\mpsclient.lib

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

 $arch/lib/libcurl.so $arch/lib/
libcurl.dylib

 $arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dylib

 $arch/lib/
libmwcpp11compat.so

19 Run the application.

 Create a C++ Client

9-13

To run your application, add the following files stored in matlabroot/toolbox/
compiler_sdk/mps_clients/c/ to the application’s path:

Files Required for Running

Windows UNIX/Linux Mac OS X
$arch\lib
\mpsclient.dll

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

$arch\lib
\libprotobuf.dll

$arch/lib/libcurl.so $arch/lib/
libcurl.dylib

$arch\lib\libcurl.dll $arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dylib

 $arch/lib/
libmwcpp11compat.so

The client invokes addmatrix function on the server instance and returns the following matrix
at the console:

5.0 7.0 9.0
9.0 7.0 5.0

9 Client Programming

9-14

RESTful API JSON Encode and Decode
Functions

10

mps.json.encode
Convert MATLAB data to JSON text using MATLAB Production Server JSON schema

Syntax
text = mps.json.encode(data)
text = mps.json.encode(data,Name,Value)

Description
text = mps.json.encode(data) encodes MATLAB data and returns JSON text in JSON schema
for MATLAB Production Server. You can use this JSON text on multiple platforms to encode content
for MATLAB Production Server.

text = mps.json.encode(data,Name,Value) specifies additional options with one or more
name-value pair arguments for specific input cases. For example, you can decide to encode data in
the large or small format defined for representing data types.

Examples

Convert a Matrix to JSON Schema for MATLAB Production Server

Encode a 3-by-3 magic square in the JSON format.

mps.json.encode(magic(3))

ans =
 '[[8,1,6],[3,5,7],[4,9,2]]'

Convert a Matrix and Specify Format for JSON Schema for MATLAB Production Server

Encode a 3-by-3 magic square in JSON using the large format option.

mps.json.encode(magic(3),'Format','large')

ans =
 '{"mwdata":[8,3,4,1,5,9,6,7,2],"mwsize":[3,3],"mwtype":"double"}'

Convert an Array Containing NaN, Inf, or -Inf to JSON Schema for MATLAB Production
Server

Encode an array containing -Inf, NaN, and Inf in JSON using 'object' in 'NanInfType' option.

mps.json.encode([-Inf NaN Inf],'NaNInfType','object','Format','large')

10 RESTful API JSON Encode and Decode Functions

10-2

ans =
 '{"mwdata":[{"mwdata":"-Inf"},{"mwdata":"NaN"},{"mwdata":"Inf"}], "mwsize":[1,3],"mwtype":"double"}'

Input Arguments
data — MATLAB data that MATLAB Production Server supports
numeric | character | logical | structure | cell

MATLAB data that MATLAB Production Server supports, specified as a numeric, character, logical,
structure, or cell.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: mps.json.encode(data,'Format','large')

Format — Format to encode data
'small' (default) | 'large'

Format to encode MATLAB data, specified as the comma-separated pair consisting of 'Format' and
the format 'small' or 'large'.

The small format is a simpler representation of MATLAB data types in JSON, whereas the large
format is a more generic representation. For more information, see “JSON Representation of MATLAB
Data Types”.

NaNInfType — Format to encode NaN, Inf, and -Inf in data
'string' (default) | 'object'

Format to encode NaN, Inf, and -Inf in data, specified as a comma-separated pair consisting of
'NaNInfType' and the JSON data-types 'string' or 'object'.

PrettyPrint — Format text for readability
false (default) | true

Format text for readability, specified as a comma-separated pair consisting of 'PrettyPrint' and
logical 'true' or 'false'.

PrettyPrint enables better readability for a user when set to true. Syntax is
mps.json.encode(magic(3),'PrettyPrint',true).

Output Arguments
text — JSON-formatted text
character vector

JSON-formatted text for JSON schema for MATLAB Production Server, returned as a character vector.

 mps.json.encode

10-3

Version History
Introduced in R2018a

See Also
mps.json.decode | mps.json.encoderequest | mps.json.decoderesponse

Topics
“JSON Representation of MATLAB Data Types” (MATLAB Production Server)
“Create Deployable Archive for MATLAB Production Server” (MATLAB Production Server)

10 RESTful API JSON Encode and Decode Functions

10-4

mps.json.decode
Convert a character vector or string in MATLAB Production Server JSON schema to MATLAB data

Syntax
data = mps.json.decode(text)

Description
data = mps.json.decode(text) parses JSON schema for MATLAB Production Server to convert
it to MATLAB data.

Examples

Decode JSON-Formatted Text for a Matrix

mps.json.decode('[[8,1,6],[3,5,7],[4,9,2]]')

ans =
 8 1 6
 3 5 7
 4 9 2

Decode a Matrix in JSON That Uses large Format

mps.json.decode('{"mwdata":[1,4,3,2],"mwsize":[2,2],"mwtype":"double"}')

ans =
 1 3
 4 2

Input Arguments
text — JSON text following the schema for MATLAB Production Server
character vector (default) | string

JSON-formatted text that follows the schema for MATLAB Production Server, specified as a character
vector or string.

text can be in various formats like small, large, NaNInfType, and PrettyPrint, as explained in
“Name-Value Pair Arguments” on page 10-3 on the mps.json.encode page.

Output Arguments
data — MATLAB data
any MATLAB data type

MATLAB data decoded from MATLAB Production Server JSON text.

 mps.json.decode

10-5

Version History
Introduced in R2018a

See Also
mps.json.encode | mps.json.encoderequest | mps.json.decoderesponse

Topics
“JSON Representation of MATLAB Data Types” (MATLAB Production Server)
“Create Deployable Archive for MATLAB Production Server” (MATLAB Production Server)

10 RESTful API JSON Encode and Decode Functions

10-6

mps.json.encoderequest
Convert MATLAB data in a server request to JSON text using MATLAB Production Server JSON
schema

Syntax
text = mps.json.encoderequest(rhs)
text = mps.json.encoderequest(rhs,Name,Value)

Description
text = mps.json.encoderequest(rhs) encodes the request that is input to the deployed
MATLAB function using JSON schema for MATLAB Production Server. It builds a server request that
includes MATLAB variables and options, such as 'Nargout' and 'OutputFormat', that are needed
to make a call to MATLAB Production Server.

text = mps.json.encoderequest(rhs,Name,Value) specifies additional options with one or
more name-value pair arguments for specific input cases.

Examples

Write MATLAB Production Server Payload

mps.json.encoderequest({[1 2 3 4]})

ans =
 '{"rhs":[[[1,2,3,4]]],"nargout":1,"outputFormat":{"mode":"small","nanType":"string"}}'

Write MATLAB Production Server Payload, and Set Output Parameters
rhs = {['Red'], [15], [1 3; 5 7], ['Green']};
mps.json.encoderequest(rhs, 'Nargout', 3, 'OutputFormat', 'large')

ans =
 '{"rhs":["Red",15,[[1,3],[5,7]],"Green"],"nargout":3,"outputFormat":{"mode":"large","nanType":"string"}}'

Write a MATLAB Function as MATLAB Production Server Payload

Use the MATLAB function horzcat that horizontally concatenates two matrices.

a = [1 2; 5 6];
b = [3 4; 7 8];
mps.json.encoderequest({horzcat(a,b)})

ans =
 '{"rhs":[[[1,2,3,4],[5,6,7,8]]],"nargout":1,"outputFormat":{"mode":"small","nanType":"string"}}'

 mps.json.encoderequest

10-7

Read Response from a sortstudent Function Deployed on MATLAB Production Server

Execute mps.json.encoderequest and mps.json.decoderesponse to call a function deployed
on MATLAB Production Server using webwrite. In this case, student names and their corresponding
scores are deployed to MATLAB Production Server to the sortstudents function that sorts students
based on their scores. The result returned is the equivalent to calling the function
sortstudents(struct('name', 'Ed', 'score', 83), struct('name', 'Toni',
'score', 91)) from MATLAB.

Assume that there is a deployable archive studentapp that contains a MATLAB function
sortstudents deployed to the server.
data = {struct('name', 'Ed', 'score', 83), struct('name', 'Toni', 'score', 91)};
body = mps.json.encoderequest(data);

options = weboptions;

% Create a weboptions object that instructs webread to return JSON text
options.ContentType = 'text';

% Create a weboptions object that instructs webwrite to encode character vector data as JSON to post it to a web service
options.MediaType = 'application/json';

response = webwrite('http://localhost:9910/studentapp/sortstudents', body, options);

result = mps.json.decoderesponse(response);

Input Arguments
rhs — Input arguments for deployed MATLAB function that is called
cell vector of any MATLAB data type supported by MATLAB Production Server

Input arguments for a MATLAB function deployed on MATLAB Production Server that is called,
specified as a cell vector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: mps.json.encoderequest(rhs, 'Format', 'large')

Nargout — Number of output arguments for function deployed on MATLAB Production
Server
1 (default) | any positive integer

Number of output arguments for function deployed on MATLAB Production Server, specified as
comma-separated pair consisting of 'Nargout' and number of output arguments.

mps.json.encoderequest(rhs, 'Nargout', 3).

Format — Format to encode rhs
'small' (default) | 'large'

Format to encode rhs, specified as comma-separated pair consisting of 'Format' and the format
'small' or 'large'.

10 RESTful API JSON Encode and Decode Functions

10-8

The small format is a simpler representation of MATLAB data types in JSON, whereas the large
format is a more generic representation. For more information, see “JSON Representation of MATLAB
Data Types”.

NaNInfType — Format to encode NaN, Inf, -Inf in rhs
'string' (default) | 'object'

Format to encode NaN, Inf, -Inf in rhs, specified as comma-separated pair consisting of
'NaNInfType' and JSON data types 'string' and 'object'.

OutputFormat — Format for response from MATLAB function deployed on MATLAB
Production Server
'small' (default) | 'large'

Format for response from MATLAB function deployed on MATLAB Production Server, specified as
comma-separated pair consisting of 'OutputFormat' and the format 'small' or 'large'.

Output format is set using mps.json.encoderequest(rhs, 'OutputFormat', 'large').

OutputNanInfType — Type for response from MATLAB function deployed on MATLAB
Production Server containing NaN, Inf, -Inf
'string' (default) | 'object'

Type for response from MATLAB function deployed on MATLAB Production Server containing NaN,
Inf, -Inf, specified as comma-separated pair consisting of 'OutputNaNInfType' and JSON data
type 'string' and 'object'.

NaN-type for output response is set using mps.json.encoderequest(rhs,
'OutputNaNInfType', 'object').

PrettyPrint — Format text for readability
false (default) | true

Format text for readability, specified as a comma-separated pair consisting of 'PrettyPrint' and
logical 'true' or 'false'. Syntax is mps.json.encoderequest(rhs,'PrettyPrint',true).

Output Arguments
text — JSON text
character vector

JSON-formatted text for JSON schema for MATLAB Production Server, returned as a character vector.

Version History
Introduced in R2018a

See Also
mps.json.encode | mps.json.decode | mps.json.decoderesponse

Topics
“JSON Representation of MATLAB Data Types” (MATLAB Production Server)

 mps.json.encoderequest

10-9

“Create Deployable Archive for MATLAB Production Server” (MATLAB Production Server)

10 RESTful API JSON Encode and Decode Functions

10-10

mps.json.decoderesponse
Convert JSON text from a server response to MATLAB data

Syntax
lhs = mps.json.decoderesponse(response)
error = mps.json.decoderesponse(response)

Description
lhs = mps.json.decoderesponse(response) reads the JSON payload of the output arguments
returned from a successful MATLAB function call.

error = mps.json.decoderesponse(response) reads the JSON payload of the MATLAB error
thrown from a failed MATLAB function call.

Examples

Read from MATLAB Production Server Payload
mps.json.decoderesponse('{"lhs":[[[1, 2, 3, 4]]]}')

ans =
 1x1 cell array
 {1x4 double}

Read response from a sortstudent function deployed on MATLAB Production Server

Execute mps.json.encoderequest and mps.json.decoderesponse to call a function deployed
on MATLAB Production Server using webwrite. In this case, student names and their corresponding
scores are deployed to MATLAB Production Server to the sortstudents function that sorts students
based on their scores. The result returned is the equivalent to calling the function
sortstudents(struct('name', 'Ed', 'score', 83), struct('name', 'Toni',
'score', 91)) from MATLAB.

Assume that there is a deployable archive studentapp that contains a MATLAB function
sortstudents deployed to the server.

data = {struct('name', 'Ed', 'score', 83), struct('name', 'Toni', 'score', 91)};
body = mps.json.encoderequest(data);

options = weboptions;

% Create a weboptions object that instructs webread to return JSON text
options.ContentType = 'text';

% Create a weboptions object that instructs webwrite to encode character vector data as JSON to post it to a web service
options.MediaType = 'application/json';

response = webwrite('http://localhost:9910/studentapp/sortstudents', body, options);

 mps.json.decoderesponse

10-11

result = mps.json.decoderesponse(response);

Input Arguments
response — JSON result from a MATLAB function call
char (default)

JSON result from a MATLAB function call specified as JSON text.

Output Arguments
lhs — Cell vector of output arguments
Cell vector

Cell vector of output arguments that are from a MATLAB function called from MATLAB Production
Server.

error — Generated output when request results in a MATLAB error
struct array

Generated output when request to MATLAB function called from MATLAB Production Server results
in a MATLAB error returned as a struct array.

Version History
Introduced in R2018a

See Also
mps.json.encode | mps.json.decode | mps.json.encoderequest

Topics
“JSON Representation of MATLAB Data Types” (MATLAB Production Server)
“Create Deployable Archive for MATLAB Production Server” (MATLAB Production Server)

10 RESTful API JSON Encode and Decode Functions

10-12

prodserver.metrics.incrementCounter
Create Prometheus counter metric

Syntax
prodserver.metrics.incrementCounter(metricName,metricValue)

Description
prodserver.metrics.incrementCounter(metricName,metricValue) creates a custom
Prometheus® counter metric. Prometheus counter values can only increase over time. The metric is
created when the following conditions are true:

• prodserver.metrics.incrementCounter is present in the MATLAB function that you deploy
to MATLAB Production Server.

• A client invokes the deployed MATLAB function that contains
prodserver.metrics.incrementCounter.

The server collects the metric when the deployed MATLAB function executes. The output of the GET
Metrics (MATLAB Production Server) API returns information about the metric name and the metric
value.

Examples

Create Custom Prometheus Counter Metric

Create a custom counter metric that a Prometheus server can monitor.

Write a MATLAB function that increments the counter. In practice, you create metrics related to your
application that help you instrument your code.

function rc = test_metric_value()
prodserver.metrics.incrementCounter("test_requests_processed",1);
rc = 0;
end

Package and deploy the MATLAB function to the server.

When a client executes the deployed function, the value of the test_requests_processed metric
is incremented by 1.

For a detailed example, see “Create Custom Prometheus Metrics”.

Input Arguments
metricName — Name of Prometheus counter metric
character array | string scalar

 prodserver.metrics.incrementCounter

10-13

Name of the Prometheus counter metric, specified as a character array or string scalar. The name
must be a valid MATLAB variable name.
Example: test_requests_processed

metricValue — Value of counter
positive numeric scalar | Inf

Numeric value of the counter metric, specified as a scalar. The value must be positive. The value can
only increase over time.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2022a

See Also
prodserver.metrics.setGauge

Topics
“Metrics Service” (MATLAB Production Server)
GET Metrics (MATLAB Production Server)

External Websites
Prometheus Metric Types

10 RESTful API JSON Encode and Decode Functions

10-14

https://prometheus.io/docs/concepts/metric_types/

prodserver.metrics.setGauge
Create Prometheus gauge metric

Syntax
prodserver.metrics.setGauge(metricName,metricValue)

Description
prodserver.metrics.setGauge(metricName,metricValue) creates a custom Prometheus
gauge metric. Prometheus gauge values can increase or decrease over time. The metric is created
when the following conditions are true:

• prodserver.metrics.setGauge is present in the MATLAB function that you deploy to MATLAB
Production Server.

• A client invokes the deployed MATLAB function that contains prodserver.metrics.setGauge.

The server collects the metric when the deployed MATLAB function executes. The output of the GET
Metrics (MATLAB Production Server) API returns information about the metric name and the metric
value.

Examples

Create Custom Prometheus Gauge Metric

Create a custom gauge metric that a Prometheus server can monitor.

Write a MATLAB function that sets the gauge to a specific value. In practice, you create metrics
related to your application that help you instrument your code.

function rc = test_metric_value()
prodserver.metrics.setGauge("requests_in_progress",4);
rc = 0;
end

Package and deploy the MATLAB function to the server.

When a client executes the deployed function, the value of the requests_in_progress metric is set
to 4.

For a detailed example, see “Create Custom Prometheus Metrics”.

Input Arguments
metricName — Name of Prometheus gauge metric
character array | string scalar

Name of the Prometheus gauge metric, specified as a character array or string scalar. The name must
be a valid MATLAB variable name.

 prodserver.metrics.setGauge

10-15

Example: requests_in_progress

metricValue — Value of gauge
numeric scalar | -Inf | Inf | NaN

Numeric value of the gauge metric, specified as a scalar. The value can increase or decrease over
time.
Example: 4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2022a

See Also
prodserver.metrics.incrementCounter

Topics
“Metrics Service” (MATLAB Production Server)
GET Metrics (MATLAB Production Server)

External Websites
Prometheus Metric Types

10 RESTful API JSON Encode and Decode Functions

10-16

https://prometheus.io/docs/concepts/metric_types/

Persistence Functions

11

mps.cache.Controller
Manage the life cycle of a persistence service in a MATLAB testing environment

Description
mps.cache.Controller is used to manage the life cycle of a persistence service in a MATLAB
testing environment. You can perform various actions such as starting and stopping the service using
the object.

Creation
Create a mps.cache.Controller object using mps.cache.control.

Properties
ActiveConnection — Connection indicator
True | False

This property is read-only.

Indicates whether the connection to the persistence provider is active or not. The value is True when
the persistence service is attached to the MATLAB session, otherwise it is False.
Example: ActiveConnection: False

ManageService — Service management indicator
True | False | Unknown

This property is read-only.

Indicates whether the controller object is managing the persistence service or not. ManageService
is True if the persistence service is started using the controller's start method and False if the
MATLAB session is attached to the persistence service using the controller's attach method. In all
other cases, the value is set to Unknown.

If ManageService is True, destroying the controller object via delete or exiting MATLAB will stop
the persistence service.
Example: ManageService: True

Host — Host name
character vector

This property is read-only.

Name of the system hosting the persistence service.

This property is not displayed when you create a controller that uses MATLAB as a persistence
provider.

11 Persistence Functions

11-2

Example: Host: 'localhost'

Port — Port number
positive scalar

This property is read-only.

Port number for persistence service.

This property is not displayed when you create a controller that uses MATLAB as a persistence
provider.
Example: Port: 4519

ProviderName — Name of persistence provider
'Redis' | 'MatlabTest'

This property is read-only.

Name of the persistence provider.

Currently, Redis is the only supported persistence provider.

You can also use MATLAB as a persistence provider for testing purposes. If you use MATLAB as a
persistence provider, the provider name is displayed as 'MatlabTest'.
Example: ProviderName: 'Redis'
Example: ProviderName: 'MatlabTest'

ConnectionName — Name of connection
character vector | string

This property is read-only.

Name of connection to persistence service.
Example: ConnectionName: 'myRedisConnection'

Folder* — Storage folder path
character vector

This property is read-only.

Storage folder path. The folder displayed is used as a database.

* This property is displayed only when you create a controller that uses MATLAB as a persistence
provider.
Example: Folder: 'c:\tmp'

Object Functions
mps.cache.control Create a persistence service controller object
start Start a persistence service and attach it to a MATLAB session
stop Stop a persistence service and detach it from a MATLAB session
restart Restart a persistence service and attach it to a MATLAB session

 mps.cache.Controller

11-3

attach Connect MATLAB session to persistence service that is already running
detach Disconnect MATLAB session from persistence service that is already running
ping Test whether the persistence service is reachable
version Version number for persistence provider

Examples
Create a Redis Service Controller

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)

ctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Host: 'localhost'
 Port: 4519
 Operations: "read | write | create | update"
 ProviderName: 'Redis'
 ConnectionName: 'myRedisConnection'

Create a MATLAB Service Controller

mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')

mctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Folder: 'c:\tmp'
 Operations: "read | write | create | update"
 ProviderName: 'MatlabTest'
 ConnectionName: 'myMATFileConnection'

Version History
Introduced in R2018b

See Also
mps.cache.DataCache

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-4

mps.cache.DataCache
Represent cache concept in MATLAB code

Description
mps.cache.DataCache represents the concept of cache in MATLAB code. It is an abstract class that
serves as a superclass for each persistence provider-specific data cache class.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Creation
Create a persistence provider-specific subclass of mps.cache.DataCache using
mps.cache.connect.

Properties
See provider-specific subclasses for properties.

Object Functions
mps.cache.connect Connect to cache, or create a cache if it doesn't exist
bytes Return the number of bytes of storage used by value stored at each key
clear Remove all keys and values from cache
flush Write all locally modified keys to the persistence service
get Fetch values of keys from cache
getp Get the value of a public cache property
isKey Determine if the cache contains specified keys
keys Get all keys from cache
length Number of key-value pairs in the data cache
purge Flush all local data to the persistence service
put Write key-value pairs to cache
remove Remove keys from cache
retain Store remote keys from cache locally or return locally stored keys

Examples
Connect to a Redis Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection')

 mps.cache.DataCache

11-5

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Version History
Introduced in R2018b

See Also
mps.cache.Controller

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-6

mps.sync.TimedMATFileMutex
Represent a MAT-file persistence service mutex

Description
mps.sync.TimedMATFileMutex is synchronization primitive used to protect data in a MAT-file
database from being simultaneously accessed by multiple workers.

Creation
Create a mps.sync.TimedMATFileMutex object using mps.sync.mutex.

Properties
Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.
Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.
Example: 'myRedisConnection'

MutexName — Name of lock
character vector

This property is read-only.

Name of advisory lock, specified as a character vector.
Example: 'myMutex'

Object Functions
mps.sync.mutex Create a persistence service mutex
acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex object
release Release advisory lock on persistence service mutex

 mps.sync.TimedMATFileMutex

11-7

Examples
Create a MAT-File Lock Object
mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')
start(mctrl)
lk = mps.sync.mutex('myMATFileMutex','Connection','myMATFileConnection')

lk =

 TimedMATFileMutex with properties:

 Expiration: 10
 ConnectionName: 'myMATFileConnection'
 MutexName: 'myMATFileMutex'

Version History
Introduced in R2018b

See Also
mps.sync.mutex | mps.sync.TimedRedisMutex | acquire | own | release

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-8

mps.sync.TimedRedisMutex
Represent a Redis persistence service mutex

Description
mps.sync.TimedRedisMutex is a synchronization primitive used to protect data in a Redis
persistence service from being simultaneously accessed by multiple workers.

Creation
Create a mps.sync.TimedRedisMutex object using mps.sync.mutex.

Properties
Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.
Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.
Example: 'myRedisConnection'

MutexName — Name of mutex
character vector

This property is read-only.

Name of mutex, returned as a character vector.
Example: 'myMutex'

Object Functions
mps.sync.mutex Create a persistence service mutex
acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex object
release Release advisory lock on persistence service mutex

 mps.sync.TimedRedisMutex

11-9

Examples
Create a Redis Lock Object

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
lk = mps.sync.mutex('myMutex','Connection','myRedisConnection')

lk =

 TimedRedisMutex with properties:

 Expiration: 10
 ConnectionName: 'myRedisConnection'
 MutexName: 'myMutex'

Version History
Introduced in R2018b

See Also
mps.sync.mutex | mps.sync.TimedMATFileMutex | acquire | own | release

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-10

acquire
Acquire advisory lock on persistence service mutex

Syntax
TF = acquire(lk,timeout)

Description
TF = acquire(lk,timeout) acquires an advisory lock and returns a logical 1 (true) if the lock
was successful, and a logical 0 (false) otherwise. If the lock is unavailable, acquire will continue
trying to acquire it for timeout seconds.

Examples

Apply Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.mutex('myDbLock','Connection','myRedisConnection')

Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.

acquire(lk, 20);

TF =

 logical

 1

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, lk will be
a mps.sync.TimedMATFileMutex object.

timeout — Retry duration
positive integer

Duration after which to retry acquiring lock.

 acquire

11-11

Example: 20

Output Arguments
TF — Logical value
logical array

TF has a logical 1 (true) if acquiring the advisory lock was successful, and a logical 0 (false)
otherwise.

Version History
Introduced in R2018b

See Also
mps.sync.mutex | own | release | mps.sync.TimedRedisMutex |
mps.sync.TimedMATFileMutex

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-12

attach
Package: mps.cache

Connect MATLAB session to persistence service that is already running

Syntax
attach(ctrl)

Description
attach(ctrl) connects a MATLAB session to a persistence service that is already running.

Examples

Connect a MATLAB Session to a Persistence Service

Attach MATLAB code to a persistence service.

Start a persistence service outside your MATLAB session from the system command line using mps-
cache or using the dashboard. Assuming your started the service using a connection name
myOutsideRedisConnection at port 8899, attach your MATLAB session to it from the MATLAB
desktop.

ctrl = mps.cache.control('myOutsideRedisConnection','Redis','Port',8899);
attach(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: attach(ctrl)

Version History
Introduced in R2018b

See Also
detach | start | stop | restart

Topics
“Data Caching Basics” (MATLAB Production Server)

 attach

11-13

bytes
Return the number of bytes of storage used by value stored at each key

Syntax
b = bytes(c,keys)

Description
b = bytes(c,keys) returns the number of bytes of storage used by value stored at each key.

Examples

Get the Number of Bytes of Storage Used by a Value in the Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and then get the number of bytes of storage used by a value stored
at each key in the cache. Represent the keys and the bytes used by each value of key as a MATLAB
table.
put (c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
b = bytes(c,{'keyOne','keyTwo','keyThree','keyFour','keyFive'})
tt = table(keys(c), bytes(c,keys(c))','VariableNames',{'Keys','Bytes'})

b =

 72 72 72 80 264

tt =

 5×2 table

 Keys Bytes
 __________ ______

 'keyFive' 264
 'keyFour' 80
 'keyOne' 72
 'keyThree' 72
 'keyTwo' 72

Input Arguments
c — Data cache
persistence provider specific data cache object

11 Persistence Functions

11-14

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

keys — Keys
cell array of character vectors

A list of all the keys, specified as a cell array of character vectors.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

Output Arguments
b — Number of bytes
numeric row vector

Number of bytes used by each value associated with a key, returned as a numeric row vector.

The byte counts in the output vector appear in the same order as the corresponding input keys. b(i)
is the byte count for keys(i).

Version History
Introduced in R2018b

See Also
length | get | keys | put

Topics
“Data Caching Basics” (MATLAB Production Server)

 bytes

11-15

clear
Remove all keys and values from cache

Syntax
n = clear(c)

Description
n = clear(c) removes all keys and values from cache and returns the number of keys cleared from
the cache in n.

clear removes both local and remote keys and values.

Examples

Clear All Keys and Values from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Clear the cache and check if it is empty.

n = clear(c)
k = keys(c)

n =

 int64

11 Persistence Functions

11-16

 5

k =

 0×1 empty cell array

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

Output Arguments
n — Number of key-value pairs
integer

Number of key-value pairs removed, returned as an integer.
Example: 5

Version History
Introduced in R2018b

See Also
put | flush | keys | purge | remove | retain

Topics
“Data Caching Basics” (MATLAB Production Server)

 clear

11-17

detach
Package: mps.cache

Disconnect MATLAB session from persistence service that is already running

Syntax
detach(ctrl)

Description
detach(ctrl) disconnects MATLAB session from a persistence service that is already running.

Examples

Disconnect MATLAB Code

Disconnect MATLAB code from a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can connect MATLAB code to it. You can
then disconnect the code from the service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
attach(ctrl)
detach(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: detach(ctrl)

Version History
Introduced in R2018b

See Also
attach | start | stop | restart

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-18

flush
Write all locally modified keys to the persistence service

Syntax
modKeys = flush(c)

Description
modKeys = flush(c) writes all locally modified data in c to the persistence service and returns a
list of keys that have been modified.

flush does not clear the list of retained keys.

Examples

Write All Locally Modified Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Retain a single key locally and verify that it shows up as a local key in the cache object.

retain(c,'keyOne')
display(c)

c =

 flush

11-19

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {'keyOne'}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Modify the local key and flush it to the remote cache. Display the keys and values in the cache as a
MATLAB table.

put(c,'keyOne',rand(3))
modKeys = flush(c)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

modKeys =

 1×1 cell array

 {'keyOne'}

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [3×3 double]
 'keyThree' [30]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

Output Arguments
modKeys — Modified keys
cell array of character vectors

A list of the modified keys that were written to the persistence service, returned as a cell array of
character vectors.

11 Persistence Functions

11-20

Version History
Introduced in R2018b

See Also
retain | purge | clear | keys | remove

Topics
“Data Caching Basics” (MATLAB Production Server)

 flush

11-21

get
Fetch values of keys from cache

Syntax
values = get(c,keys)

Description
values = get(c,keys) fetches values of keys specified by keys from the cache specified by c.
Values are returned in the same order as input variables as a cell array.

Examples

Get Values for Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Get all the keys and associated values and display them as a MATLAB table.
k = keys(c)
v = get(c,{'keyOne','keyTwo','keyThree','keyFour','keyFive'})
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

k =

 5×1 cell array

 {'keyFive' }
 {'keyFour' }
 {'keyOne' }
 {'keyThree'}
 {'keyTwo' }

v =

 1×5 cell array

 {[10]} {[20]} {[30]} {1×2 double} {5×5 double}

tt =

11 Persistence Functions

11-22

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

keys — Keys
cell array of character vectors

A cell array of keys whose values you want to retrieve from cache.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

Output Arguments
values — Values
cell array

A list of values associated with keys, returned as a cell array.

Version History
Introduced in R2018b

See Also
getp | keys | length | put

Topics
“Data Caching Basics” (MATLAB Production Server)

 get

11-23

getp
Get the value of a public cache property

Syntax
value = getp(c,property)

Description
value = getp(c,property) gets the value of a public cache property.

Ordinarily, you would be able to access the public properties of a cache object using the dot notation.
For example: c.Connection. However, all cache objects use dot reference and dot assignment to
refer to keys stored in the cache rather than cache object properties. Therefore, c.Connection
refers to a key named Connection in the cache instead of the cache's Connection property.

There is no setp method since all cache properties are read-only.

Examples

Get the Value of a Named, Public, Hidden Property

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retrieve the connection name.

getp(c,'Connection')

ans =

 'myRedisConnection'

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

11 Persistence Functions

11-24

property — Property name
character vector

Property name, specified as a character vector. The common public cache properties are Name,
LocalKeys, and Connection. Provider-specific cache objects may have additional properties. For
example, mps.cache.RedisCache has the properties Host and Port.
Example: 'Connection'

Output Arguments
value — Property value
valid value

A valid property value.

Version History
Introduced in R2018b

See Also
get | keys | put

Topics
“Data Caching Basics” (MATLAB Production Server)

 getp

11-25

isKey
Determine if the cache contains specified keys

Syntax
TF = isKey(c,keys)

Description
TF = isKey(c,keys) returns a logical 1 (true) if c contains the specified key, and returns a
logical 0 (false) otherwise.

If keys is an array that specifies multiple keys, then TF is a logical array of the same size, and TF{i}
is true if keys{i} exists in cache c.

Examples

Determine if the Cache Contains Specified Keys

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Determine if the cache contains specified keys.

TF = isKey(c,{'keyOne','keyTW00','keyTREE','key4','keyFive'})

TF =

 1×5 logical array

 1 0 0 0 1

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

11 Persistence Functions

11-26

keys — Keys to search for
character vector | string | cell array of character vectors or strings

Keys to search for in the cache object c, specified as a character vector, string, or cell array of
character vectors or strings. To search for multiple keys, specify keys as a cell array.
Example: {'keyOne','keyTW00','keyTREE','key4','keyFive'}

Output Arguments
TF — Logical value
logical array

A logical array of the same size as keys indicating which specified keys were found in the data cache.
TF has a logical 1 (true) if c contains a key specified by keys, and a logical 0 (false) otherwise.

Version History
Introduced in R2018b

See Also
keys | get | length | put

Topics
“Data Caching Basics” (MATLAB Production Server)

 isKey

11-27

keys
Get all keys from cache

Syntax
k = keys(c)

Description
k = keys(c) returns a list of all the keys in a data cache as a cell array.

Examples

Get Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Get all keys.

k = keys(c)

k =

 5×1 cell array

 {'keyFive' }
 {'keyFour' }
 {'keyOne' }
 {'keyThree'}
 {'keyTwo' }

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

11 Persistence Functions

11-28

Output Arguments
k — Keys
cell array of character vectors

Keys from cache, returned as a cell array of character vectors.

Version History
Introduced in R2018b

See Also
isKey | bytes | get | length | put

Topics
“Data Caching Basics” (MATLAB Production Server)

 keys

11-29

length
Number of key-value pairs in the data cache

Syntax
num = length(c)
num = length(c,location)

Description
num = length(c) returns the total number of key-value pairs in the data cache c.

num = length(c,location) returns the numbers of key-value pairs in the data cache c stored
remotely or locally as specified by location.

Examples

Count the Number of Key-Value Pairs

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retain a few keys locally.
retain(c, {'keyOne','keyTwo'})

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Count the number of keys-value pairs.

numTotal = length(c)
numRemote = length(c,'Remote')
numLocal = length(c,'Local')

numTotal =

 int64

 5

numRemote =

 int64

 3

11 Persistence Functions

11-30

numLocal =

 int64

 2

Since keyOne and keyTwo were retained before being written to the cache, they were never written
to the persistence service. They are stored locally until flushed or purged to the persistence service.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

location — Location name
'Remote' | 'Local'

Location of keys specified as an enumerated member of the class mps.cache.Location. The valid
location options are either 'Remote' or 'Local'.
Example: 'Remote'

Output Arguments
num — Number of keys
integer

Total number of key-value pairs in the data cache or the number stored remotely or locally, returned
as an integer.

Version History
Introduced in R2018b

See Also
keys | bytes | get | isKey | put

Topics
“Data Caching Basics” (MATLAB Production Server)

 length

11-31

mps.cache.connect
Connect to cache, or create a cache if it doesn't exist

Syntax
c = mps.cache.connect(cacheName)
c = mps.cache.connect(cacheName,'Connection',connectionName)

Description
c = mps.cache.connect(cacheName) connects to a cache when there's a single connection to a
persistence service.

c = mps.cache.connect(cacheName,'Connection',connectionName) connects to a cache
using the connection specified by connectionName when there are multiple connections to a
persistence service.

Examples

Create a Cache When There is a Single Connection to a Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

When you have a single connection, you do not need to specify the connection name to
mps.cache.connect.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)
start(ctrl)
c = mps.cache.connect('myCache');

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Create a Cache When There are Multiple Connections to a Persistence Service

When you have multiple connections to a persistence service, create a cache by specifying the
connection name associated with the service you want to use.

11 Persistence Functions

11-32

ctrl_1 = mps.cache.control('myRedisConnection1','Redis','Port',4519)
start(ctrl_1)
ctrl_2 = mps.cache.control('myRedisConnection2','Redis','Port',4520)
start(ctrl_2)
c = mps.cache.connect('myCache','Connection','myRedisConnection1')

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection1'

Use getp instead of dot notation to access properties.

Input Arguments
cacheName — Cache name to connect to or create
character vector

Cache name to connect to or create, specified as a character vector.
Example: 'myCache'

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.
Example: 'Connection','myRedisConnection'

Output Arguments
c — Data cache object
persistence provider-specific data cache object

A persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Version History
Introduced in R2018b

See Also
mps.cache.DataCache

 mps.cache.connect

11-33

mps.cache.control
Create a persistence service controller object

Syntax
ctrl = mps.cache.control(connectionName,Provider,'Port',num)
ctrl = mps.cache.control(connectionName,Provider,'Folder',folderPath)

Description
ctrl = mps.cache.control(connectionName,Provider,'Port',num) creates a persistence
service controller object using a connection to a persistence service specified by connectionName, a
persistence provider specified by Provider, and a port number num for the service.

You cannot compile and deploy this function on the server. This function is available only for testing.

ctrl = mps.cache.control(connectionName,Provider,'Folder',folderPath) creates a
persistence service controller object that uses a folder specified by folderPath as a database.

Use this syntax when you want to use MATLAB as a persistence provider for testing purposes.

You cannot compile and deploy this function on the server. This function is available only for testing.

Examples
Create a Redis Service Controller

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)

ctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Host: 'localhost'
 Port: 4519
 Operations: "read | write | create | update"
 ProviderName: 'Redis'
 ConnectionName: 'myRedisConnection'

Create a MATLAB Service Controller

mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')

mctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Folder: 'c:\tmp'

11 Persistence Functions

11-34

 Operations: "read | write | create | update"
 ProviderName: 'MatlabTest'
 ConnectionName: 'myMATFileConnection'

Input Arguments
connectionName — Name of the connection
character vector | string

Name of the connection to the persistence service, specified as a character vector.

The connectionName links a MATLAB session to a persistence service.
Example: 'myRedisConnection'

Provider — Name of the persistence provider
'Redis' | 'MatlabTest'

Name of the persistence provider, specified as a character vector.

You can use MATLAB as a persistence provider for testing purposes. If you use MATLAB as a
persistence provider, specify the provider name as 'MatlabTest'.
Example: 'Redis'
Example: 'MatlabTest'

num — Port number
positive scalar

Port number for the persistence service.
Example: 'Port', 4519

folderPath — Storage folder path
character vector

Storage folder path, specified as a character vector.

Specify this input only when you want to use MATLAB as a persistence provider for testing purposes.
A folder specified by folderPath serves as a database.
Example: 'Folder','c:\tmp'

Output Arguments
ctrl — Persistence provider service controller object
mps.cache.Controller object

Persistence provider service controller returned as a mps.cache.Controller object.

Version History
Introduced in R2018b

 mps.cache.control

11-35

See Also
mps.cache.Controller | start | stop | restart

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-36

mps.sync.mutex
Create a persistence service mutex

Syntax
lk = mps.sync.mutex(mutexName,'Connection',connectionName,Name,Value)

Description
lk = mps.sync.mutex(mutexName,'Connection',connectionName,Name,Value) creates a
database advisory lock object.

Examples

Create a Redis Mutex

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.mutex('myMutex','Connection','myRedisConnection')

lk =

 TimedRedisMutex with properties:

 Expiration: 10
 ConnectionName: 'myRedisConnection'
 MutexName: 'myMutex'

Input Arguments
mutexName — Mutex name
character vector

Name of persistence service mutex, specified as a character vector.
Example: 'myMutex'

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.
Example: 'Connection','myRedisConnection'

 mps.sync.mutex

11-37

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Expiration', 10

Expiration — Time in seconds
positive integer

Expiration time in seconds after the lock is acquired.

Other clients will be able to acquire the lock even if you do not release it.
Example: 'Expiration', 10

Output Arguments
lk — Mutex object
persistence service mutex object

A persistence service mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use MATLAB as your persistence provider, lk will be a
mps.sync.TimedMATFileMutex object.

Tips
• A persistence service mutex allows multiple clients to take turns using a shared resource. Each

cooperating client creates a mutex object with the same name using a connection to a shared
persistence service. To gain exclusive access to the shared resource, a client attempts to acquire a
lock on the mutex. When the client finishes operating on the shared resource, it releases the lock.
To prevent lockouts should the locking client crash, all locks expire after a certain amount of time.

• Acquiring a lock on a mutex prevents other clients from acquiring a lock on that mutex but it does
not lock the persistence service or any keys or values stored in the persistence service. These
locks are advisory only and are meant to be used by cooperating clients intent of preventing data
corruption. Rogue clients will be able to corrupt or delete data if they do not voluntarily respect
the mutex locks.

Version History
Introduced in R2018b

See Also
acquire | own | release | mps.sync.TimedRedisMutex | mps.sync.TimedMATFileMutex

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-38

own
Check ownership of advisory lock on a persistence service mutex object

Syntax
TF = own(lk)

Description
TF = own(lk) returns a logical 1 (true) if you own an advisory lock on the persistence service
mutex, and returns a logical 0 (false) otherwise.

Examples

Check If You Own the Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.mutex('myDbLock','Connection','myRedisConnection')

Check if you own the advisory lock.

TF = own(lk)

TF =

 logical

 0

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, lk will be
a mps.sync.TimedMATFileMutex object.

Output Arguments
TF — Logical value
logical array

 own

11-39

TF has a logical 1 (true) if you own the advisory lock on the persistence service mutex, and a
logical 0 (false) otherwise.

Version History
Introduced in R2018b

See Also
mps.sync.mutex | acquire | release | mps.sync.TimedRedisMutex |
mps.sync.TimedMATFileMutex

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-40

ping
Test whether the persistence service is reachable

Syntax
ping(ctrl)

Description
ping(ctrl) tests whether the persistence service is reachable. In order to ping a persistence
service, it must be started and attached to yourMATLAB session.

Examples

Ping Persistence Service

Test whether the persistence service is reachable.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can ping the service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
ping(ctrl)

Sending ping to Redis on localhost:4519.
Redis service running on localhost:4519.

ans =

 logical

 1

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: ping(ctrl)

Version History
Introduced in R2018b

See Also
start | stop | restart

 ping

11-41

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-42

purge
Flush all local data to the persistence service

Syntax
purgedKeys = purge(c)

Description
purgedKeys = purge(c) flushes all local data to the persistence service and removes it locally.

Examples

Flush All Local Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Retain a few keys locally. For more information, see retain.
retain(c, {'keyOne','keyTwo'})

Modify the local keys and purge the data. Display the keys and values in the cache as a MATLAB
table.

put(c,'keyOne',rand(3),'keyTwo', eye(10))
purgedKeys = purge(c)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})
display(c)

purgedKeys =

 2×1 cell array

 {'keyOne'}
 {'keyTwo'}

tt =

 5×2 table

 Keys Values
 __________ ______________

 purge

11-43

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [3×3 double]
 'keyThree' [30]
 'keyTwo' [10×10 double]

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

Output Arguments
purgedKeys — Purged keys
cell array of character vectors

List of keys that were written to the persistence service, returned as a cell array of character vectors.

Version History
Introduced in R2018b

See Also
clear | flush | keys | length | remove | retain

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-44

put
Write key-value pairs to cache

Syntax
put(c,key1,value1,...,keyN,valueN)
put(c,keySet,valueSet)

Description
put(c,key1,value1,...,keyN,valueN) writes key-value pairs to cache. You can store any type
of MATLAB data in a cache.

put(c,keySet,valueSet) writes key-value pairs to cache with keys from by keySet, each mapped
to a corresponding value from valueSet. The input arguments keySet and valueSet must have the
same number of elements, with keySet having elements that are unique.

Examples

Write Series of Key-Value Pairs to Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

 put

11-45

Write Set of Keys and Corresponding Values to Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add a set of keys and corresponding values to the cache and display them as a MATLAB table.

keySet = {'keyOne','keyTwo','keyThree','keyFour','keyFive'}
valueSet = {10, 20, 30, [400 500], magic(5)}
put(d,keySet,valueSet)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Write Object to Cache

Create a class whose object you want to write to the Redis cache.

classdef BasicClass
 properties
 Value = pi;
 end
 methods
 function r = roundOff(obj)
 r = round([obj.Value],2);
 end
 function r = multiplyBy(obj,n)
 r = [obj.Value] * n;
 end
 end
end

Create an object of the class and assign a value to the Value property,

a = BasicClass
a.Value = 4

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

11 Persistence Functions

11-46

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add a key and the object that you created to the cache and retrieve the object.
put(c,'objKey',a)
objVal = get(c,'objKey')

objVal =

 BasicClass with properties:

 Value: 4

The output shows that there is no loss of information during writing an object to the cache and
retrieving the object from the cache. The retrieved object contains the same information as the input
object.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

key — Key
character vector

Key to add, specified as a character vector.
Example: 'keyFour'

value — Value
array

Value, specified as an array. value can be any valid MATLAB data type, including MATLAB objects.
Example: [400, 500]

keySet — Keys
cell array of character vectors

Keys, specified as a cell array of character vectors.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

valueSet — Values
cell array

Values, specified as comma-separated cell array. Each value may be any valid MATLAB data type,
including MATLAB objects.
Example: {10, 20, 30, [400 500], magic(5)}

 put

11-47

Version History
Introduced in R2018b

See Also
keys | get | bytes | length | remove | clear

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-48

release
Release advisory lock on persistence service mutex

Syntax
TF = release(lk)

Description
TF = release(lk) releases an advisory lock on a persistence service mutex. If the lock expires
before you release it, release returns a logical 0 (false). If this occurs, it may indicate potential
data corruption.

Examples

Release Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.mutex('myDbLock','Connection','myRedisConnection')

Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.

acquire(lk, 20);

Release lock.

TF = release(lk)

TF =

 logical

 1

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, lk will be
a mps.sync.TimedMATFileMutex object.

 release

11-49

Output Arguments
TF — Logical value
logical array

TF has a logical 1 (true) if releasing the advisory lock was successful, and a logical 0 (false)
otherwise.

Version History
Introduced in R2018b

See Also
mps.sync.mutex | acquire | own | mps.sync.TimedRedisMutex |
mps.sync.TimedMATFileMutex

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-50

remove
Remove keys from cache

Syntax
num = remove(c,keys)

Description
num = remove(c,keys) removes keys and associated values from cache. There is no way to
recover removed keys.

Examples

Remove Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Remove two keys from cache c and display the remaining keys and values in the cache as a MATLAB
table.

num = remove(c,{'keyThree','keyFour'})
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

num =

 int64

 remove

11-51

 2

tt =

 3×2 table

 Keys Values
 _________ ____________

 'keyFive' [5×5 double]
 'keyOne' [10]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

keys — Keys to remove
cell array of character vectors

Keys to remove from cache, specified as a cell array of character vectors.
Example: {'keyThree','keyFour'}

Output Arguments
num — Number of keys removed
integer

Number of keys removed, returned as an integer.

Version History
Introduced in R2018b

See Also
put | keys | get | purge | retain | clear

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-52

restart
Restart a persistence service and attach it to a MATLAB session

Syntax
restart(ctrl)

Description
restart(ctrl) restarts a persistence service represented by ctrl. You only restart a services you
originally started using start.

Examples

Restart a Persistence Provider

Restart a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can then restart it.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
restart(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: restart(ctrl)

Version History
Introduced in R2018b

See Also
start | stop | attach | detach

Topics
“Data Caching Basics” (MATLAB Production Server)

 restart

11-53

retain
Store remote keys from cache locally or return locally stored keys

Syntax
retain(c,remoteKeys)
localKeys = retain(c)

Description
retain(c,remoteKeys) stores keys from cache locally.

localKeys = retain(c) returns a cell array of keys stored locally.

Examples

Store Keys from Cache Locally and Check Local Keys

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Retain a few keys locally and check local keys.
retain(c,{'keyThree','keyFour'})
localKeys = retain(c)

localKeys =

 1×2 cell array

 {'keyThree'} {'keyFour'}

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

11 Persistence Functions

11-54

remoteKeys — Keys
cell array of character vectors

Remote keys to store locally, specified as a cell array of character vectors.
Example: {'keyThree','keyFour'}

Output Arguments
localKeys — Keys
cell array of character vectors

Locally stored keys, returned as a cell array of character vectors.

Tips
• As a performance optimization you may choose to temporarily store a set of keys and their values

in your MATLAB session or worker instead of the persistence service. Keys retained in the this
fashion will be automatically written to the persistence service (see flush) when MATLAB exits or
when the first function call returns.

• Manually control the lifetime of retained keys with the flush and purge methods.

Version History
Introduced in R2018b

See Also
flush | purge | remove | clear

Topics
“Data Caching Basics” (MATLAB Production Server)

 retain

11-55

start
Start a persistence service and attach it to a MATLAB session

Syntax
start(ctrl)

Description
start(ctrl) starts a persistence service represented by ctrl and attaches it to a current MATLAB
session.

• To make a persistence service available in a MATLAB session, the service must be started and
then attached to the MATLAB session. start performs both these actions.

• If a persistence service has already been started, there is no need to call start. Use attach
instead.

• start and stop, attach and detach must be used in pairs.
• If you connected a persistence service to your MATLAB session with start, you must disconnect

with stop.
• If you connected with attach, you must disconnect with detach.

Examples
Start a Persistence Service

Start a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: start(ctrl)

Version History
Introduced in R2018b

See Also
stop | restart | attach | detach

11 Persistence Functions

11-56

Topics
“Data Caching Basics” (MATLAB Production Server)

 start

11-57

stop
Stop a persistence service and detach it from a MATLAB session

Syntax
stop(ctrl)

Description
stop(ctrl) stops a persistence service represented by ctrl and detaches it from a current
MATLAB session.

• You cannot stop a service that has not been started.
• You can only stop a service that has been started using start.
• Exiting MATLAB will automatically call stop on all persistence services that were started using

start.

Examples

Stop a Persistence Service

Stop a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can then stop it.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
stop(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: stop(ctrl)

Version History
Introduced in R2018b

See Also
start | restart | attach | detach

11 Persistence Functions

11-58

Topics
“Data Caching Basics” (MATLAB Production Server)

 stop

11-59

version
Version number for persistence provider

Syntax
version(ctrl)

Description
version(ctrl) returns the version number for the persistence provider. In order to get the version
number of the persistence provider, the persistence service must be started and attached to
yourMATLAB session.

Examples

Get Version Number

Get the version number of the persistence provider that the persistence service is connected to.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can get the version number.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
version(ctrl)

Redis version: 3.0.504

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: version(ctrl)

Version History
Introduced in R2018b

See Also
start | stop | restart

Topics
“Data Caching Basics” (MATLAB Production Server)

11 Persistence Functions

11-60

Examples

12

Deploy Object Detection Model as Microservice

This example shows how to create a microservice Docker image from a MATLAB object detection
model. The microservice image created by MATLAB Compiler SDK provides an HTTP/HTTPS
endpoint to access MATLAB code.

You package a MATLAB function into a deployable archive, and then create a Docker image that
contains the archive and a minimal MATLAB Runtime package. You can then run the image in Docker
and make calls to the service using any of the MATLAB Production Server client APIs.

Download Support Package

Type matlabshared.supportpkg.getInstalled at the MATLAB command prompt to verify
whether the following add-on is installed:

• Computer Vision Toolbox Model for YOLO v4 Object Detection

If you need to install the add-on, click the Add-Ons icon in the MATLAB toolstrip and search for the
add-on. You can also download and install it from the MathWorks File Exchange.

Prerequisites

• Verify that you have MATLAB Compiler SDK installed on the development machine.
• Verify that you have Docker installed and configured on the development machine by typing

[~,msg] = system('docker version') in a MATLAB command window. If you are using
WSL, use the command [~,msg] = system('wsl docker version') instead.

• If you do not have Docker installed, follow the instructions on the Docker website to install and set
up Docker. For details, see docs.docker.com/engine/install/.

• To build microservice images on Windows, you must install either Docker Desktop or Docker on
Windows Subsystem for Linux v2 (WSL2). To install Docker Desktop, see docs.docker.com/
desktop/windows/install/. For instructions on how to install Docker on WSL2, see
https://www.mathworks.com/matlabcentral/answers/1758410-how-do-i-install-
docker-on-wsl2.

• If the computer you are using is not connected to the Internet, you must download the MATLAB
Runtime installer for Linux from a computer that is connected to the Internet and transfer the
installer to the computer that is not connected to the Internet. Then, on the offline machine, run
the command compiler.runtime.createInstallerDockerImage, where filepath is the
path to the MATLAB Runtime installer archive. You can download the installer from the
MathWorks website. For details, see https://www.mathworks.com/products/compiler/
matlab-runtime.html.

Create MATLAB Function to Detect Objects

Write an object detection function named cvt using the following code. Save the function in a file
named cvt.m.

function [bboxes, scores, labels] = cvt(imageUrl)
iminfo = imfinfo(imageUrl);
 % Read image
 % If indexed image, read colormap and convert to rgb
 if strcmp(iminfo.ColorType,'indexed') == 1
 [im, cmap] = webread(imageUrl, 'Timeout', 10);s(

12 Examples

12-2

https://www.mathworks.com/matlabcentral/fileexchange/107969-computer-vision-toolbox-model-for-yolo-v4-object-detection
https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/windows/install/
https://www.mathworks.com/matlabcentral/answers/1758410-how-do-i-install-docker-on-wsl2.
https://www.mathworks.com/matlabcentral/answers/1758410-how-do-i-install-docker-on-wsl2.
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

 im = ind2rgb(im, cmap);
 else
 im = webread(imageUrl, 'Timeout', 10);
 end
% Add pretrained YOLO v4 dataset tinyYOLOv4COCO.mat to MATLAB path for testing
% Comment or remove the next 2 lines of code prior to deploying as microservice
detectorPath = [matlabshared.supportpkg.getSupportPackageRoot, '/toolbox/vision/supportpackages/yolov4/data'];
addpath(detectorPath)
load('tinyYOLOv4COCO.mat', 'detector');

% Detect objects in image using detector
[bboxes,scores,labels] = detect(detector,im);
labels = cellstr(labels);
end

Test the function from the MATLAB command line:

%% Specify image URL
imageUrl = "https://www.mathworks.com/help/examples/deeplearning_shared/win64/TrafficSignDetectionAndRecognitionExample_02.png"
%% Display image
imageFile = "trafficimage.jpg";
imageFileFullPath = websave(imageFile, imageUrl);
[im, cmap] = imread(imageFileFullPath);
imshow(im, cmap)
%% Detect objects in image
[bboxes, scores, labels] = cvt(imageUrl)

bboxes =
 2×4 single matrix
 445.3871 326.4009 223.3270 98.7086
 504.2861 271.4571 45.7471 41.0955
scores =
 2×1 single column vector
 0.9151
 0.6610
labels =
 2×1 cell array
 {'truck' }
 {'stop sign'}

Create Deployable Archive

Comment the following lines of code in the cvt.m file prior to creating a deployable archive.

% detectorPath = [matlabshared.supportpkg.getSupportPackageRoot, '/toolbox/vision/supportpackages/yolov4/data'];
% addpath(detectorPath)

Package the cvt function into a deployable archive using the
compiler.build.productionServerArchive function.

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.productionServerArchive.

buildResults = compiler.build.productionServerArchive('cvt.m', ...
 'ArchiveName','yolov4od','Verbose',true, ...
 'SupportPackages',{'Computer Vision Toolbox Model for YOLO v4 Object Detection'};

buildResults =
 Results with properties:

 Deploy Object Detection Model as Microservice

12-3

https://www.mathworks.com/help/compiler_sdk/mps_dev_test/compiler.build.productionserverarchive.html

 BuildType: 'productionServerArchive'
 Files: {'/home/mluser/work/yolov4odproductionServerArchive/yolov4od.ctf'}
 IncludedSupportPackages: {'Computer Vision Toolbox Model for YOLO v4 Object Detection'}
 Options: [1×1 compiler.build.ProductionServerArchiveOptions]

The buildResults object contains information on the build type, generated files, included support
packages, and build options.

Once the build is complete, the function creates a folder named
yolov4odproductionServerArchive in your current directory to store the deployable archive.

Package Archive into Microservice Docker Image

Build the microservice Docker image using the buildResults object that you created.

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.package.microserviceDockerImage.

compiler.package.microserviceDockerImage(buildResults,...
 'ImageName','yolov4od-microservice',...
 'DockerContext',fullfile(pwd,'microserviceDockerContext'));

The function generates the following files within a folder named microserviceDockerContext in
your current working directory:

• applicationFilesForMATLABCompiler/yolov4od.ctf — Deployable archive file.
• Dockerfile — Docker file that specifies Docker run-time options.
• GettingStarted.txt — Text file that contains deployment information.

Test Docker Image

In a system command window, verify that your yolov4od-microservice image is in your list of
Docker images.

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
yolov4od-microservice latest 4401fa2bc057 33 seconds ago 7.56GB
matlabruntime/r2022b/update0/4200000000000000 latest 5259656e4a32 24 minutes ago 7.04GB

Run the yolov4od-microservice microservice image from the system command prompt.

docker run --rm -p 9900:9910 yolov4od-microservice -l trace &

Port 9910 is the default port exposed by the microservice within the Docker container. You can map it
to any available port on your host machine. For this example, it is mapped to port 9900.

You can specify additional options in the Docker command. For a complete list of options, see
“Microservice Command Arguments” on page 1-17.

Once the microservice container is running in Docker, you can check the status of the service by
going to the following URL in a web browser: http://hostname:9900/api/health

If the service is ready to receive requests, you see the following message: "status: ok"

Test the running service. In the terminal, use the curl command to send a JSON query with the input
argument 4 to the service through port 9900. For more information on constructing JSON requests,

12 Examples

12-4

see “JSON Representation of MATLAB Data Types” (MATLAB Production Server) (MATLAB
Production Server).

curl -v -H Content-Type:application/json \
-d '{"nargout":3,"rhs":["https://www.mathworks.com/help/examples/deeplearning_shared/win64/TrafficSignDetectionAndRecognitionExample_02.png"]}' \
"http://hostname:9900/yolov4od/cvt" | jq -c

The output is:

{"lhs":[{"mwdata":[445.387146,504.286102,326.40094,271.457092,223.327026,45.7471,98.7086487,41.09552],"mwsize":[2,4],"mwtype":"single"},
{"mwdata":[0.91510725,0.661022],"mwsize":[2,1],"mwtype":"single"},
{"mwdata":[{"mwdata":["truck"],"mwsize":[1,5],"mwtype":"char"},
{"mwdata":["stop sign"],"mwsize":[1,9],"mwtype":"char"}],"mwsize":[2,1],"mwtype":"cell"}]}

You can also test from the MATLAB desktop:

%% Import MATLAB HTTP interface packages
import matlab.net.*
import matlab.net.http.*
import matlab.net.http.fields.*

%% Setup message body
body = MessageBody;
body.Payload = ...
 '{"nargout": 3,"rhs": ["https://www.mathworks.com/help/examples/deeplearning_shared/win64/TrafficSignDetectionAndRecognitionExample_02.png"]}';

%% Setup request
requestUri = URI('http://hostname:9900/yolov4od/cvt');
options = matlab.net.http.HTTPOptions('ConnectTimeout',20,...
 'ConvertResponse',false);
request = RequestMessage;
request.Header = HeaderField('Content-Type','application/json');
request.Method = 'POST';
request.Body = body;

%% Send request & view raw response
response = request.send(requestUri, options);
disp(response.Body.Data)

%% Decode JSON
lhs = mps.json.decoderesponse(response.Body.Data);

%% Clean up printed output
for i = 1:length(lhs)
 [r,c] = size(lhs{i});
 if ~iscell(lhs{i}) && c==1
 tmp(:,i) = num2cell(lhs{i});
 elseif ~iscell(lhs{i}) && c~=1
 tmp(:,i) = num2cell(lhs{i},2);
 else
 tmp(:,i) = lhs{i};
 end
end
%% Display response as a table
T = cell2table(tmp,'VariableNames',{'Boxes', 'Scores', 'Labels'})

The output is:

 Deploy Object Detection Model as Microservice

12-5

T =

 2×3 table

 Boxes Scores Labels
 ____________________________________ _______ _____________

 445.39 326.4 223.33 98.709 0.91511 {'truck' }
 504.29 271.46 45.747 41.096 0.66102 {'stop sign'}

To stop the service, use the following command to display the container id.

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
f372b8b574e8 yolov4od-microservice "/opt/matlabruntime/…" 6 hours ago Up 6 hours 0.0.0.0:9900->9910/tcp distracted_panini

Stop the service using the specified container id.

docker stop f372b8b574e8

Share Docker Image

You can share your Docker image in various ways.

• Push your image to the Docker central registry DockerHub, or to your private registry. This is the
most common workflow.

• Save your image as a tar archive and share it with others. This workflow is suitable for immediate
testing.

For details about pushing your image to DockerHub or your private registry, consult the Docker
documentation.

Save Docker Image as Tar Archive

To save your Docker image as a tar archive, open a system command window, navigate to the Docker
context folder, and type the following.

docker save yolov4od-microservice -o yolov4od-microservice.tar

This command creates a file named yolov4od-microservice.tar in the current folder. Set the
appropriate permissions (for example, using chmod) prior to sharing the tarball with other users.

Load Docker Image from Tar Archive

Load the image contained in the tarball on the end user machine.

docker load --input yolov4od-microservice.tar

Verify that the image is loaded.

docker images

Run Docker Image

12 Examples

12-6

docker run --rm -p 9900:9910 yolov4od-microservice

See Also
matlabshared.supportpkg.getInstalled | compiler.build.productionServerArchive |
compiler.package.microserviceDockerImage |
compiler.runtime.createInstallerDockerImage

External Websites
• https://docs.docker.com/engine/install/
• https://docs.docker.com/desktop/windows/install/
• https://www.mathworks.com/matlabcentral/answers/1758410-how-do-i-install-docker-on-wsl2
• https://www.mathworks.com/products/compiler/matlab-runtime.html

 Deploy Object Detection Model as Microservice

12-7

https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/windows/install/
https://www.mathworks.com/matlabcentral/answers/1758410-how-do-i-install-docker-on-wsl2
https://www.mathworks.com/products/compiler/matlab-runtime.html

	Deployable Archive Creation
	Create Deployable Archive for MATLAB Production Server
	Create MATLAB Function
	Create Deployable Archive with Production Server Compiler App
	Customize Application and Its Appearance
	Package Application
	Create Deployable Archive Using compiler.build.productionServerArchive
	Compatibility Considerations

	Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server
	Prerequisites
	Create Function in MATLAB
	Create Deployable Archive with Excel Integration Using Production Server Compiler App
	Customize the Application and Its Appearance
	Package the Application
	Create Deployable Archive with Excel Integration Using compiler.build.excelClientForProductionServer
	Install the Deployable Archive with Excel Integration

	Create Microservice Docker Image
	Prerequisites
	Create MATLAB Function
	Create Deployable Archive
	Package Deployable Archive into Docker Image
	Test Docker Image
	Share Docker Image

	Microservice Command Arguments
	Deploy Object Detection Model as Microservice
	Required Products
	Prerequisites
	Create MATLAB Function to Detect Objects
	Create Deployable Archive
	Package Archive into Microservice Docker Image
	Test Docker Image
	Share Docker Image

	Write Deployable MATLAB Code
	MATLAB Coding Guidelines
	State-Dependent Functions
	Does My MATLAB Function Carry State?
	Defensive Coding Practices
	Techniques for Preserving State

	Deploying MATLAB Functions Containing MEX Files
	Supported MATLAB Data Types for Client and Server Marshaling
	Supported Data Types
	Partially Supported Data Types
	Unsupported Data Types

	Modifying Deployed Functions
	Use Parallel Computing Resources in Deployable Archives
	Use Profile Available in Cluster Profile Manager
	Link to Exported Profile
	Reuse Existing Parallel Pool in Deployable Archive
	Limitations

	Persistence
	Data Caching Basics
	Typical Workflow for Data Caching
	Configure Server to Use Redis
	Example: Increment Counter Using Data Cache

	Manage Application State in Deployed Archives
	Step 1: Write MATLAB Code that uses Persistence Functions
	Step 2: Run Example in Testing Workflow
	Step 3: Run Example in Deployment Workflow

	Handle Custom Routes and Payloads in HTTP Requests
	Write MATLAB Function for Web Request Handler
	Configure Server for URL Routes
	End-to-End Setup for Web Request Handler

	MATLAB Production Server Integration Testing
	Write a Test Client
	Test Client Data Integration Against MATLAB
	Create a MATLAB Function
	Prepare for Testing
	Test Using RESTful API
	Testing Using Java Client Application

	Test Web Request Handlers
	Set Environment Variable for Routes File
	Use MATLAB Preferences Folder for Routes File
	End-to-End Setup to Test Web Request Handlers

	MATLAB Not Responding to Web Requests Made to Test Server
	Issue
	Possible Solution

	MATLAB Production Server Excel Add-In
	Data Marshaling Rules
	Default Marshaling Rules
	Change Rules for Marshaling Data into MATLAB
	Change Rules for Marshaling Data into Excel

	MATLAB Production Server Excel Add-In
	XLA File Not Generated
	Server Configuration Add-in Not Enabled
	Error Using a Variable Number of Outputs

	Functions
	compiler.build.excelClientForProductionServer
	compiler.build.ExcelClientForProductionServerOptions
	compiler.build.productionServerArchive
	compiler.build.ProductionServerArchiveOptions
	compiler.build.Results
	compiler.package.microserviceDockerImage
	compiler.package.MicroserviceDockerImageOptions
	compiler.runtime.createInstallerDockerImage
	productionServerCompiler

	Apps
	Production Server Compiler

	Client Programming
	Create MATLAB Production Server Java Client Using MWHttpClient Class
	Create a C# Client
	Create a Python Client
	Create a C++ Client

	RESTful API JSON Encode and Decode Functions
	mps.json.encode
	mps.json.decode
	mps.json.encoderequest
	mps.json.decoderesponse
	prodserver.metrics.incrementCounter
	prodserver.metrics.setGauge

	Persistence Functions
	mps.cache.Controller
	mps.cache.DataCache
	mps.sync.TimedMATFileMutex
	mps.sync.TimedRedisMutex
	acquire
	attach
	bytes
	clear
	detach
	flush
	get
	getp
	isKey
	keys
	length
	mps.cache.connect
	mps.cache.control
	mps.sync.mutex
	own
	ping
	purge
	put
	release
	remove
	restart
	retain
	start
	stop
	version

	Create Custom Prometheus Metrics
	Write MATLAB Code to Create Custom Metrics
	Deploy MATLAB Function to Server
	Enable Metrics on Server
	Execute Deployed Function
	Query Metrics Service to Retrieve Custom Metrics

	Examples
	Deploy Object Detection Model as Microservice

